تأثیر 8 هفته تمرینات شدید در مقابل تمرینات با حجم بالا بر کمپلکس ژنی فاکتور رونویسی 4 / پروتئین همولوگ C/EBP-10 بافت چربی زیرجلدی رتهای نر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیولوژی ورزش، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه پیام نور، البرز، ایران

2 گروه فیزیولوژی ورزش، گروه تربیت بدنی و علوم ورزشی، دانشگاه پیام نور، تهران، ایران

3 گروه فیزیولوژی ورزش، پژوهشکده علوم ورزشی، تهران، ایران

4 فیزیولوژی ورزش، دانشگاه آزاد اسلامی واحد کرج، گروه تربیت بدنی و علوم ورزشی، البرز، ایران

10.32598/JSMJ.21.2.2552

چکیده

زمینه و هدف هدف از انجام این تحقیق بررسی تأثیر شد تهای متفاوت تمرین هوازی بر بیان ژ نهای فاکتور رونویسی 4 و پروتئین همول
10- C/EBP در بافت چربی زیرجلدی ر تهای نر ویستار بود.
روش بررسی در این مطالعه تجربی 32 سر رت نر نژاد ویستار با میانگین سنی 6 هفته و وزن 33 ± 237 گرم انتخاب شدند. سپ س
ب هصورت تصادفی در 4 گروه 8 تایی شامل گروه کنترل، تمرین هوازی با شدت متوسط، تمری نهوازی پرشدت، تمرین هوازی تناوبی
پرشدت قرار گرفتند که گروه تمرین هوازی با شدت متوسط با شدت ثابت 65 درصد حداکثر اکسیژن مصرفی به مدت 47 دقیقه، گروه
تمری نهوازی پرشدت دویدن ب ا سرع ت 20 متر در دقیقه با شیب فزاینده در مدت 40 دقیقه و گروه تمرین هوازی تناوبی پرشدت با
شدت 90 تا 100 درصد حداکثر اکسیژن مصرفی به مدت 37 دقیقه تمرین کردند. باف تبرداری از بافت چربی 24 ساعت پس از آخرین
جلسه تمرینی برای بررسی بیان ژن و پروتئین همولوگ فاکتور رونویسی 4 به روش واکنش زنجیر های پلیمراز در زمان واقعی انجام شد.
یافت هها نتایج بررس یها نشان داد اختلاف معناداری در بیان ژن پروتئین همولوگ C/EBP-10 در بافت زیرجلدی ر تهای نر ویستار فقط
میان گروه تمرین هوازی تناوبی پرشدت نسبت به گرو ههای تمرین هوازی با شدت متوسط و کنترل وجود دارد ( 004 / P=0 (؛ ب اای نحال
میان گرو ههای تمرین هوازی تناوبی پرشدت و گروه های تمرینی دیگر تفاوت معن اداری مشاهده نشد ) P=1 (. همچنین مشخص شد
اختلاف معن اداری در بیان ژن فاکتور رونویسی 4 در بافت زیرجلدی ر تهای نر ویستار میان گروه تمرین هوازی تناوبی پرشدت نسبت به
گروه کنترل ) 006 / P=0 ( وجود دارد. ب اای نحال، میان گرو ههای تمرین هوازی تناوبی پرشدت و تمری نهوازی پرشدت تفاوت معن یداری
مشاهده نشد ) .)P=1
نتیج هگیری نتایج پژوهش نشان داد میزان ژ نهای آدیپوژنیک مورد مطالعه در پاسخ به تمرینات هوازی تناوبی پرشدت کاهش یافت. این
یافت هها نشان م یدهند فعالیت ورزشی ب همنظور کنترل میزان بیان ژ نهای دخیل در متابولیسم چربی مؤثر است.

کلیدواژه‌ها


[1] Enns JE, Hanke D, Park A, Zahradka P, Taylor CG. Diets high in
monounsaturated and polyunsaturated fatty acids decrease
fatty acid synthase protein levels in adipose tissue but do not alter
other markers of adipose function and inflammation in dietinduced
obese rats. Prostaglandins Leukot Essent Fatty Acids.
2014; 90(2-3):77-84. [DOI:10.1016/j.plefa.2013.12.002] [PMID]
[2] Severinsen MCK, Schéele C, Pedersen BK. Exercise and
browning of white adipose tissue-a translational perspective.
Curr Opin Pharmacol. 2020; 52:18-24. [DOI:10.1016/j.
coph.2020.04.004] [PMID]
[3] Mansueto G, Armani A, Viscomi C, D’Orsi L, De Cegli R, Polishchuk
EV, et al. Transcription factor EB controls metabolic
flexibility during exercise. Cell Metab. 2017; 25(1):182-96.
[DOI:10.1016/j.cmet.2016.11.003] [PMID] [PMCID]
[4] Teixeira JR, Szeto RA, Carvalho VM, Muotri AR, Papes F. Transcription
factor 4 and its association with psychiatric disorders.
Transl Psychiatry . 2021; 11(1):19. [DOI:10.1038/s41398-020-
01138-0] [PMID] [PMCID]
[5] de Pontual L, Mathieu Y, Golzio C, Rio M, Malan V, Boddaert
N, et al. Mutational, functional, and expression studies of the
TCF4 gene in Pitt‐Hopkins syndrome. Human Mutat. 2009;
30(4):669-76. [DOI:10.1002/humu.20935] [PMID]
[6] Zweier C, Peippo MM, Hoyer J, Sousa S, Bottani A, Clayton-
Smith J, et al. Haploinsufficiency of TCF4 causes syndromal
mental retardation with intermittent hyperventilation (Pitt-
Hopkins syndrome). Am J Hum Genet. 2007; 80(5):994-1001.
[DOI:10.1086/515583] [PMID] [PMCID]
[7] Jiang WY, Xing C, Wang HW, Wang W, Chen SZ, Ning LF, et al.
A Lox/CHOP‐10 crosstalk governs osteogenic and adipogenic
cell fate by MSCs. J Cell Mol Med. 2018; 22(10):5097-108.
[DOI:10.1111/jcmm.13798] [PMID] [PMCID]
[8] Burman A, Kropski JA, Calvi CL, Serezani AP, Pascoalino BD, Han
W, et al. Localized hypoxia links ER stress to lung fibrosis through
induction of C/EBP homologous protein. JCI Insight. 2018;
3(16):e99543. [DOI:10.1172/jci.insight.99543] [PMID] [PMCID]
[9] Hu H, Tian M, Ding C, Yu S. The C/EBP homologous protein
(CHOP) transcription factor functions in endoplasmic reticulum
stress-induced apoptosis and microbial infection. Front
Immunol. 2019; 9:3083. [DOI:10.3389/fimmu.2018.03083]
[PMID] [PMCID]
[10] Manuel AM, Walla MD, Dorn MT, Tanis RM, Piroli GG, Frizzell
N. Fumarate and oxidative stress synergize to promote
stability of C/EBP homologous protein in the adipocyte. Free
Radic Biol Med. 2020; 148:70-82. [DOI:10.1016/j.freeradbiomed.
2019.12.037] [PMID] [PMCID]
[11] Yang Y, Liu L, Naik I, Braunstein Z, Zhong J, Ren B. Transcription factor
C/EBP homologous protein in health and diseases. Front Immunol.
2017; 8:1612. [DOI:10.3389/fimmu.2017.01612] [PMID] [PMCID]
[12] Andersen PA, Petrenko V, Rose PH, Koomen M, Fischer N,
Ghiasi SM, et al. Proinflammatory cytokines perturb mouse
and human pancreatic islet circadian rhythmicity and induce
uncoordinated β-Cell clock gene expression via nitric oxide,
lysine deacetylases, and immunoproteasomal activity. Int J
Mol Sci. 2021; 22(1):83. [DOI:10.3390/ijms22010083] [PMID]
[PMCID]
[13] Karaman S, Hollmén M, Robciuc MR, Alitalo A, Nurmi H, Morf
B, et al. Blockade of VEGF-C and VEGF-D modulates adipose tissue
inflammation and improves metabolic parameters under
high-fat diet. Mol Metab. 2015; 4(2):93-105. [DOI:10.1016/j.
molmet.2014.11.006] [PMID] [PMCID]
[14] Stanford KI, Goodyear LJ. Exercise regulation of adipose tissue.
Adipocyte. 2016; 5(2):153-62. [DOI:10.1080/21623945.2
016.1191307] [PMID] [PMCID]
[15] Gordon B, Chen S, Durstine JL. The effects of exercise
training on the traditional lipid profile and beyond.
Curr Sports Med Rep. 2014; 13(4):253-9. [DOI:10.1249/
JSR.0000000000000073] [PMID]
[16] Zorba E, Cengiz T, Karacabey K. Exercise training improves
body composition, blood lipid profile and serum insulin levels
in obese children. JJ Sports Med Phys Fitness. 2011; 51(4):664-
9. [PMID]
[17] Ruegsegger GN, Booth FW. Running from disease: Molecular
mechanisms associating dopamine and leptin signaling
in the brain with physical inactivity, obesity, and type 2
diabetes. Front Endocrinol. 2017; 8:109. [DOI:10.3389/fendo.
2017.00109] [PMID] [PMCID]
[18] Biddle SJ, Batterham AM. High-intensity interval exercise
training for public health: A big hit or shall we hit it on the
head? Int J Behav Nutr Phys Act. 2015; 12:95. [DOI:10.1186/
s12966-015-0254-9] [PMID] [PMCID]
[19] Ross LM, Slentz CA, Zidek AM, Huffman KM, Shalaurova I,
Otvos JD, et al. Effects of amount, intensity, and mode of exercise
training on insulin resistance and type 2 diabetes risk in
the strride randomized trials. Front Physiol. 2021; 12:626142.
[DOI:10.3389/fphys.2021.626142] [PMID] [PMCID]
[20] Jiang Y, Tan S, Wang Z, Guo Z, Li Q, Wang J. Aerobic exercise
training at maximal fat oxidation intensity improves body
composition, glycemic control, and physical capacity in older
people with type 2 diabetes. J Exerc Sci Fit. 2020; 18(1):7–13.
[DOI:10.1016/j.jesf.2019.08.003] [PMID] [PMCID]
[21] Fisher G, Brown AW, Brown MM, Alcorn A, Noles C, Winwood
L, et al. High intensity interval-vs moderate intensitytraining
for improving cardiometabolic health in overweight
or obese males: A randomized controlled trial. Plos One.
2015; 10(10):e0138853. [DOI:10.1371/journal.pone.0138853]
[PMID] [PMCID]
[22] Tjønna AE, Leinan IM, Bartnes AT, Jenssen BM, Gibala MJ,
Winett RA, et al. Low-and high-volume of intensive endurance
training significantly improves maximal oxygen uptake
after 10-weeks of training in healthy men. Plos One. 2013;
8(5):e65382. [DOI:10.1371/journal.pone.0065382] [PMID]
[PMCID]
[23] Francois ME, Little JP. Effectiveness and safety of high-intensity
interval training in patients with type 2 diabetes. Diabetes
Spectr. 2015; 28(1):39-44. [DOI:10.2337/diaspect.28.1.39]
[PMID] [PMCID]
[24] Zhang X, Meng K, Pu Y, Wang C, Chen Y, Wang L. Hyperglycemia
altered the fate of cardiac stem cells to adipogenesis
through inhibiting the β-Catenin/TCF-4 pathway. Cell Physiol
Biochem. 2018; 49(6):2254-63. [DOI:10.1159/000493828]
[PMID]
Khishbin M, et al. 8 weeks of High Intensity Training vs High Volume Training on TCF4/CHOP10 Gene . JSMJ. 2022; 21(2):278-291
289
June, July 2022. Volume 21. Number 2
[25] Nakamura Y, Hinoi E, Iezaki T, Takada S, Hashizume S, Takahata
Y, et al. Repression of adipogenesis through promotion
of Wnt/β-catenin signaling by TIS7 up-regulated in adipocytes
under hypoxia. Biochim Biophys Acta. 2013; 1832(8):1117-28.
[DOI:10.1016/j.bbadis.2013.03.010] [PMID]
[26] Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson
RL, et al. Inhibition of adipogenesis by Wnt signaling. Science.
2000; 289(5481):950-3. [DOI:10.1126/science.289.5481.950]
[PMID]
[27] Xu Y, Jiang Y, Jia B, Wang Y, Li T. Icariin stimulates osteogenesis
and suppresses adipogenesis of human bone mesenchymal
stem cells via miR-23a-mediated activation of the Wnt/β-
catenin signaling pathway. Phytomedicine. 2021; 85:153485.
[DOI:10.1016/j.phymed.2021.153485] [PMID]
[28] Bagchi DP, Nishii A, Li Z, DelProposto JB, Corsa CA, Mori H, et
al. Wnt/β-catenin signaling regulates adipose tissue lipogenesis
and adipocyte-specific loss is rigorously defended by neighboring
stromal-vascular cells. Mol Metab. 2020; 42:101078.
[DOI:10.1016/j.molmet.2020.101078] [PMID] [PMCID]
[29] Aamir K, Khan HU, Sethi G, Hossain MA, Arya A. Wnt signaling
mediates TLR pathway and promote unrestrained adipogenesis
and metaflammation: Therapeutic targets for obesity
and type 2 diabetes. Pharmacol Res. 2020; 152:104602.
[DOI:10.1016/j.phrs.2019.104602] [PMID]
[30] Greb-Markiewicz B, Kazana W, Zarębski M, Ożyhar A. The
subcellular localization of bHLH transcription factor TCF4 is
mediated by multiple nuclear localization and nuclear export
signals. Sci Rep. 2019; 9(1):15629. [DOI:10.1038/s41598-019-
52239-w] [PMID] [PMCID]
[31] Fayaz E, Damirchi A, Zebardast N, Babaei P. Cinnamon extract
combined with high-intensity endurance training alleviates
metabolic syndrome via non-canonical WNT signaling. Nutrition.
2019; 65:173-8. [DOI:10.1016/j.nut.2019.03.009] [PMID]
[32] Pradhan RN, Zachara M, Deplancke B. A systems perspective
on brown adipogenesis and metabolic activation. Obes Rev.
2017; 18:65-81. [DOI:10.1111/obr.12512] [PMID]
[33] Dozorets RW. C/EBPβ lip-mediated augmentation of ER
stress-triggered cell death: Mechanisms of action [PhD thesis]
. Reẖovot: The Weizmann Institute of Science; 2017. [Link]
[34] Sun D, Wang C, Long S, Ma Y, Guo Y, Huang Z, et al. C/EBP-
β-activated microRNA-223 promotes tumour growth through
targeting RASA1 in human colorectal cancer. Br J Cancer. 2015;
112(9):1491-500. [DOI:10.1038/bjc.2015.107] [PMID] [PMCID]
[35] Bozi LH, Jannig PR, Rolim N, Voltarelli VA, Dourado PM,
Wisløff U, et al. Aerobic exercise training rescues cardiac protein
quality control and blunts endoplasmic reticulum stress
in heart failure rats. J Cell Mol Med. 2016; 20(11):2208-12.
[DOI:10.1111/jcmm.12894] [PMID] [PMCID]
Khishbin M, et al. 8 weeks of High Intensity Training vs High Volume Training on TCF4/CHOP10 Gene . JSMJ. 2022; 21(2):278-291