مقایسه القای کندروژنز بین دو مدل آزمایشگاهی و حیوانی با استفاده از فاکتور رشد تغییردهنده بتا 3 کارتوژنین و آووکادو/سویا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ژنتیک و بیولوژی مولکولی، دانشکده پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 گروه بیولوژی و علوم تشریحی، دانشکده پزشکی، دانشگاه علوم پزشکی شهید صدوقی یزد، یزد، ایران

10.32598/JSMJ.21.2.2296

چکیده

زمینه و هدف مهندسی بافت غضروف، با استفاده از سلو لهای بنیادی، داربست و فاکتورهای رشد مناسب درصدد تولید بافت غضروف
طبیعی است تا بتواند جایگزین بافت غضروف آسی بدید ه شود و مشکلاتی را که در مسیر درمان آسی بهای غضروفی وجود دارد، برطرف
کند. هدف از این تحقیق، مقایسه شرایط آزمایشگاهی و مدل حیوانی تمایز سلو لهای بنیادی مشتق از بافت چربی انسانی تحت تأثیر
فاکتو رهای رشد تغییردهنده بتا ۳، کارتوژنین و آووکادو/سویا، بر داربست فیبرین است.
روش بررسی در این مطالعه آزمایشگاه یتجربی، پس از استخراج سلو لهای بنیادی از بافت چربی انسانی، القای تمایز کندروژنیک به
مدت 14 روز بر روی داربست فیبرین در محیط آزمایشگاهی انجام شد و سلو لهای تمایزیافته در داربست فیبرین، ب هصورت زیرجلدی در
موش صحرایی نر به مدت 2 هفته پیوند شدند. مقایسه بررس یهای هیستولوژی و ایمونوهیستوشیمی در 2 مدل آزمایشگاهی و حیوانی
انجام شد.
یافت ه افزایش معن اداری در دانسیته تجمع رنگ تولوئیدین بلو در گرو ههای فاکتور رشد تغییردهنده بتا ۳، کارتوژنین و آووکادو/سویا در مدل
حیوانی نسبت به مدل آزمایشگاهی مشاهده شد. در ارتباط با نتایج ایمونوهیستوشیمی کلاژن نوع 10 ، در گروه فاکتور رشد تغییردهنده
بتا ۳ میزان تجمع این نوع کلاژن در مدل حیوانی نسبت به شرایط آزمایشگاهی افزایش معن اداری داشته است، اما در گروه کارتوژنین و
گروه آووکادو/سویا، تجمع کلاژن نوع 10 در مدل حیوانی نسبت به شرایط آزمایشگاهی، کاهش معن اداری نشان داده است.
نتیج هگیری نتایج نشان داده است کاشت سلو لهای غضروفی تمایزیافته در محیط آزمایشگاه، قبل از انتقال به زیر پوست رت م یتواند به
بلوغ و کام لتر شدن ویژگ یهای غضروف ساخت هشده کمک کند.

کلیدواژه‌ها


[1] Khorasani G, Miri R, Ghanbarzade K, Farzad H, Farhadi H. [Effect
of dexamethasone on viability of cartilage grafts in preserving
medias (Persian)]. Med J Mashhad Univ Med Sci. 2016;
9(3):155-62. [DOI:10.22038/MJMS.2016.7723]
[2] Basiri A, Hashemibeni B, Kazemi M, Valiani A, Aliakbari M,
Ghasemi N. Cartilage tissue formation from human adiposederived
stem cells via herbal component (avocado/soybean
unsaponifiables) in scaffold-free culture system. Dental Res J.
2020; 17(1):54-9. [DOI:10.4103/1735-3327.276236] [PMID]
[PMCID]
[3] Izadi M, Valiani A, Bahramian H, Esfandiari E, Hashemibeni B.
Which factor is better for cartilage tissue engineering from human
adipose-derived stem cells? Kartogenin or avocado soybean
unsaponifiable. Pharmacophore. 2018; 9:140-8. [Link]
[4] Augustyniak E, Trzeciak T, Richter M, Kaczmarczyk J, Suchorska
W. The role of growth factors in stem cell-directed chondrogenesis:
A real hope for damaged cartilage regeneration. Int
Orthop. 2015; 39(5):995-1003. [DOI:10.1007/s00264-014-
2619-0] [PMID]
[5] Endo K, Fujita N, Nakagawa T, Nishimura R. Comparison of
the effect of growth factors on chondrogenesis of canine
mesenchymal stem cells. J Vet Med Sci. 2019; 81(8):1211-8.
[DOI:10.1292/jvms.18-0551] [PMID] [PMCID]
[6] Mueller MB, Fischer M, Zellner J, Berner A, Dienstknecht T,
Prantl L, et al. Hypertrophy in mesenchymal stem cell chondrogenesis:
Effect of TGF-β isoforms and chondrogenic
conditioning. Cells Tissues Organs. 2010; 192(3):158-66.
[DOI:10.1159/000313399] [PMID] [PMCID]
[7] López-Ruiz E, Jiménez G, Kwiatkowski W, Montañez E, Arrebola
F, Carrillo E, et al. Impact of TGF-β family-related growth
factors on chondrogenic differentiation of adipose-derived
stem cells isolated from lipoaspirates and infrapatellar fat
pads of osteoarthritic patients. Eur Cell Mater. 2018; 35:209-
24. [DOI:10.22203/eCM.v035a15] [PMID] [PMCID]
[8] Johnson K, Zhu S, Tremblay MS, Payette JN, Wang J, Bouchez LC,
et al. A stem cell-based approach to cartilage repair. Science.
2012; 336(6082):717-21. [DOI:10.1126/science.1215157]
[PMID]
[9] Thiers M. [Unsaponifiable constituents of avocado and soya
oils. treatment of certain forms of arthralgia (French)]. J Med
Lyon. 1972; 53(222):195. [PMID]
[10] Kut‐Lasserre C, Miller CC, Ejeil A, Gogly B, Dridi M, Piccardi
N, et al. Effect of avocado and soybean unsaponifiables on
gelatinase A (MMP‐2), stromelysin 1 (MMP‐3), and tissue inhibitors
of matrix metalloproteinase (TIMP‐1 and TIMP‐2) secretion
by human fibroblasts in culture. J Periodontol. 2001;
72(12):1685-94. [DOI:10.1902/jop.2001.72.12.1685] [PMID]
[11] Bahrami M, Valiani A, Amirpour N, Rani MZR, Hashemibeni
B. Cartilage tissue engineering via icariin and adipose-derived
stem cells in fibrin scaffold. Adv Biomed Res. 2018; 7:36.
[DOI:10.4103/2277-9175.225925] [PMID] [PMCID]
[12] Hashemibeni B, Razavi S, Esfandiary E, Karbasi S, Mardani
M, Nasresfahani M. Induction of chondrogenic differentiation
of human adipose-derived stem cells with TGF-β3 in
pellet culture system. Iran J Basic Med Sci. 2008; 11(1):10-7.
[DOI:10.22038/IJBMS.2008.5191]
[13] Hashemibeni B, Valiani A, Esmaeli M, Kazemi M, Aliakbari
M, Iranpour FG. Comparison of the efficacy of piascledine
and transforming growth factor β1 on chondrogenic differentiation
of human adipose-derived stem cells in fibrin and
fibrin-alginate scaffolds. Iran J Basic Med Sci. 2018; 21(2):212.
[DOI:10.22038/IJBMS.2018.24693.6136] [PMID] [PMCID]
[14] Liu F, Xu H, Huang H. A novel kartogenin-platelet-rich plasma
gel enhances chondrogenesis of bone marrow mesenchymal
stem cells in vitro and promotes wounded meniscus healing
in vivo. Stem Cell Res Ther. 2019; 10(1):201. [DOI:10.1186/
s13287-019-1314-x] [PMID] [PMCID]
[15] Park JS, Yang HN, Woo DG, Jeon SY, Park KH. Chondrogenesis
of human mesenchymal stem cells in fibrin constructs evaluated
in vitro and in nude mouse and rabbit defects models.
Biomaterials. 2011; 32(6):1495-507. [DOI:10.1016/j.biomaterials.
2010.11.003] [PMID]
[16] Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A,
Webster TJ. A review of fibrin and fibrin composites for bone
tissue engineering. Int J Nanomedicine. 2017; 12:4937-61.
[DOI:10.2147/IJN.S124671] [PMID] [PMCID]
[17] Kreuz P, Gentili C, Samans B, Martinelli D, Krüger J, Mittelmeier
W, et al. Scaffold-assisted cartilage tissue engineering using
infant chondrocytes from human hip cartilage. Osteoarthritis
Cartilage. 2013; 21(12):1997-2005. [DOI:10.1016/j.
joca.2013.09.007] [PMID]
[18] Schmitz N, Laverty S, Kraus V, Aigner T. Basic methods in histopathology
of joint tissues. Osteoarthritis Cartilage. 2010;
18:S113-6. [DOI:10.1016/j.joca.2010.05.026] [PMID]
[19] Solchaga LA, Penick KJ, Welter JF. Chondrogenic differentiation
of bone marrow-derived mesenchymal stem cells: Tips
and tricks. In: Vemuri M, Chase L, Rao M, editors. Mesenchymal
stem cell assays and applications. Totowa: Humana Press;
2011. [DOI:10.1007/978-1-60761-999-4_20]
[20] Jensen EC. Quantitative analysis of histological staining and
fluorescence using imagej. The Anat Rec. 2013; 296(3):378-81.
[DOI:10.1002/ar.22641] [PMID]
[21] Stock M, Menges S, Eitzinger N, Geßlein M, Botschner R,
Wormser L, et al. A dual role of upper zone of growth plate
and cartilage matrix-associated protein in human and mouse
osteoarthritic cartilage: Inhibition of aggrecanases and promotion
of bone turnover. Arthritis Rheumatol. 2017; 69(6):1233-
45. [DOI:10.1002/art.40042] [PMID]
[22] Saito T, Tanaka S. Molecular mechanisms underlying osteoarthritis
development: Notch and NF-κB. Arthritis Res Ther. 2017;
19(1):94. [DOI:10.1186/s13075-017-1296-y] [PMID] [PMCID]
[23] Hotham W, Malviya A. A systematic review of surgical methods
to restore articular cartilage in the hip. Bone Joint Res.
2018; 7(5):336-42. [DOI:10.1302/2046-3758.75.BJR-2017-
0331] [PMID] [PMCID]
[24] Karimpour Malekshah A, Talebpour Amiri F, Ghaffari E, Alizadeh
A, Jamalpoor Z, Mirhosseini M, et al. Growth and chondrogenic
differentiation of mesenchymal stem cells derived from
References
[1] Khorasani G, Miri R, Ghanbarzade K, Farzad H, Farhadi H. [Effect
of dexamethasone on viability of cartilage grafts in preserving
medias (Persian)]. Med J Mashhad Univ Med Sci. 2016;
9(3):155-62. [DOI:10.22038/MJMS.2016.7723]
[2] Basiri A, Hashemibeni B, Kazemi M, Valiani A, Aliakbari M,
Ghasemi N. Cartilage tissue formation from human adiposederived
stem cells via herbal component (avocado/soybean
unsaponifiables) in scaffold-free culture system. Dental Res J.
2020; 17(1):54-9. [DOI:10.4103/1735-3327.276236] [PMID]
[PMCID]
[3] Izadi M, Valiani A, Bahramian H, Esfandiari E, Hashemibeni B.
Which factor is better for cartilage tissue engineering from human
adipose-derived stem cells? Kartogenin or avocado soybean
unsaponifiable. Pharmacophore. 2018; 9:140-8. [Link]
[4] Augustyniak E, Trzeciak T, Richter M, Kaczmarczyk J, Suchorska
W. The role of growth factors in stem cell-directed chondrogenesis:
A real hope for damaged cartilage regeneration. Int
Orthop. 2015; 39(5):995-1003. [DOI:10.1007/s00264-014-
2619-0] [PMID]
[5] Endo K, Fujita N, Nakagawa T, Nishimura R. Comparison of
the effect of growth factors on chondrogenesis of canine
mesenchymal stem cells. J Vet Med Sci. 2019; 81(8):1211-8.
[DOI:10.1292/jvms.18-0551] [PMID] [PMCID]
[6] Mueller MB, Fischer M, Zellner J, Berner A, Dienstknecht T,
Prantl L, et al. Hypertrophy in mesenchymal stem cell chondrogenesis:
Effect of TGF-β isoforms and chondrogenic
conditioning. Cells Tissues Organs. 2010; 192(3):158-66.
[DOI:10.1159/000313399] [PMID] [PMCID]
[7] López-Ruiz E, Jiménez G, Kwiatkowski W, Montañez E, Arrebola
F, Carrillo E, et al. Impact of TGF-β family-related growth
factors on chondrogenic differentiation of adipose-derived
stem cells isolated from lipoaspirates and infrapatellar fat
pads of osteoarthritic patients. Eur Cell Mater. 2018; 35:209-
24. [DOI:10.22203/eCM.v035a15] [PMID] [PMCID]
[8] Johnson K, Zhu S, Tremblay MS, Payette JN, Wang J, Bouchez LC,
et al. A stem cell-based approach to cartilage repair. Science.
2012; 336(6082):717-21. [DOI:10.1126/science.1215157]
[PMID]
[9] Thiers M. [Unsaponifiable constituents of avocado and soya
oils. treatment of certain forms of arthralgia (French)]. J Med
Lyon. 1972; 53(222):195. [PMID]
[10] Kut‐Lasserre C, Miller CC, Ejeil A, Gogly B, Dridi M, Piccardi
N, et al. Effect of avocado and soybean unsaponifiables on
gelatinase A (MMP‐2), stromelysin 1 (MMP‐3), and tissue inhibitors
of matrix metalloproteinase (TIMP‐1 and TIMP‐2) secretion
by human fibroblasts in culture. J Periodontol. 2001;
72(12):1685-94. [DOI:10.1902/jop.2001.72.12.1685] [PMID]
[11] Bahrami M, Valiani A, Amirpour N, Rani MZR, Hashemibeni
B. Cartilage tissue engineering via icariin and adipose-derived
stem cells in fibrin scaffold. Adv Biomed Res. 2018; 7:36.
[DOI:10.4103/2277-9175.225925] [PMID] [PMCID]
[12] Hashemibeni B, Razavi S, Esfandiary E, Karbasi S, Mardani
M, Nasresfahani M. Induction of chondrogenic differentiation
of human adipose-derived stem cells with TGF-β3 in
HashemIbeni B. et al. Comparison of Chondrogenesis Induction by TGF-β3, Kartogenin and Avocado/soybean Unsaponifiables. JSMJ. 2022; 21(2):264-277
276
June, July 2022. Volume 21. Number 2
human adipose tissue on chitosan scaffolds. J Babol Univ Med
Sci. 2016; 18(9):32-8. [Link]
[25] Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak
F. Chondrogenic potential of adipose tissue-derived stromal
cells in vitro and in vivo. Biochem Biophys Res Commun.
2002; 290(2):763-9. [DOI:10.1006/bbrc.2001.6270] [PMID]
[26] Zhang D, Yi C, Zhang J, Chen Y, Yao X, Yang M. The effects of
carbon nanotubes on the proliferation and differentiation of
primary osteoblasts. Nanotechnology. 2007; 18(47):475102.
[DOI:10.1088/0957-4484/18/47/475102]
[27] Chen Y, Bilgen B, Pareta RA, Myles AJ, Fenniri H, Ciombor
DM, et al. Self-assembled rosette nanotube/hydrogel composites
for cartilage tissue engineering. Tissue Eng Part C Methods.
2010; 16(6):1233-43. [DOI:10.1089/ten.tec.2009.0400]
[PMID]
[28] Mauviel A, Loyau G, Pujol J. [Effect of unsaponifiable extracts
of avocado and soybean (piascledine) on the collagenolytic action
of cultures of human rheumatoid synoviocytes and rabbit
articular chondrocytes treated with interleukin-1 (French)].
Rev Rhum Mal Osteoartic. 1991; 58(4):241-5. [PMID]
[29] Hashemibeni B, Razavi S, Esfandiary E, Salehi M, Karbasi S,
Mardani M, et al. [The effect of BMP-6 growth factor on differentiation
of adipose-derived stem cells into chondrocyte
in pellet culture system (Persian)]. J Isfahan Med Sch. 2009;
27(100):618-31. [Link]
[30] George M, Abraham TE. Polyionic hydrocolloids for the intestinal
delivery of protein drugs: Alginate and chitosan-a review.
J Control Release. 2006; 114(1):1-14. [DOI:10.1016/j.jconrel.
2006.04.017] [PMID]
[31] Girandon L, Kregar-Velikonja N, Bozikov K, Barlic A. In vitro
models for adipose tissue engineering with adipose-derived
stem cells using different scaffolds of natural origin. Folia Biol.
2011; 57(2):47-56. [PMID]
[32] Munirah S, Kim S, Ruszymah BH, Khang G. The use of fibrin
and poly (lactic-co-glycolic acid) hybrid scaffold for articular
cartilage tissue engineering: An in vivo analysis. Eur Cell Mater.
2008; 15:41-52. [DOI:10.22203/eCM.v015a04] [PMID]
[33] Ab-Rahim S, Selvaratnam L, Raghavendran HR, Kamarul
T. Chondrocyte-alginate constructs with or without TGF-β1
produces superior extracellular matrix expression than monolayer
cultures. Mol Cell Biochem. 2013; 376(1-2):11-20.
[DOI:10.1007/s11010-012-1543-0] [PMID]
[34] Esmaeily M, Hashemibeni B, Valiani A, Amirpour N, Purmollaabbasi
B, Kazemi M. [Effect of piasclidin on induction of
chondrogenesis by human adipose-derived stem cells in fibrin
scaffold (Persian)]. J sfahan Med Sch. 2016; 33(357):1862-70.
[Link]
[35] Zhang J, Wang JH. Kartogenin induces cartilage-like tissue
formation in tendon-bone junction. Bone Res. 2014; 2:14008.
[DOI:10.1038/boneres.2014.8] [PMID] [PMCID]
[36] Yuan T, Zhang J, Zhao G, Zhou Y, Zhang CQ, Wang JH. Creating
an animal model of tendinopathy by inducing chondrogenic differentiation
with kartogenin. Plos One. 2016; 11(2):e0148557.
[DOI:10.1371/journal.pone.0148557] [PMID] [PMCID]
[37] Sasano Y, Takahashi I, Zhu J-X, Ohtani H, Mizoguchi I, Kagayama
M. Gene and protein expressions of type I collagen
are regulated tissue-specifically in rat hyaline cartilages in
vivo. Eur J Morphol. 2001; 39(3):149-54. [DOI:10.1076/
ejom.39.3.149.4675] [PMID]