بهره گیری از نانوحامل ها در دارورسانی پوستی

نوع مقاله : مروری

نویسندگان

1 گروه فارماسیوتیکس- دانشکده داروسازی

2 رزیدنت داروسازی بالینی،گروه داروسازی بالینی، دانشکده داروسازی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.

3 دانشجوی دکترای مهندسی شیمی.دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، تهران، ایران.

چکیده

زمینه و هدف: عبورپذیری تراپوستی به رساندن دارو به درون بدن از طریق پوست برای درمان موضعی یا عمومی اطلاق می شوند. داروهای جذب شده از راه تراپوستی فاقد اثر اول کبدی بوده و همچنین عاری از عوارض گوارشی هستند. استفاده از جذب افزاهای شیمیایی و همچنین سامانه های جذب افزای فیزیکی امروزه به دلیل گرانی و همچنین تغییرات بر روی پوست کمتر مورد استفاده هستند و نگاه آینده به استفاده از فناوری های نوین است. یکی از مهم ترین فناوری های نوین در حوزه ی دارورسانی تراپوستی بهره گیری از نانوحامل های دارویی است. فرمولاسیون های نانو ذراتی در حدود 10 تا 100 نانومتر داشته و ذرات کوچکتر جذب و عبورپذیری ساده تری از سطح پوست دارند. یافته ها: در پژوهش حاضر ضمن بررسی مطالعات گذشته پیرامون بهره گیری از فناوری نانو در سامانه های تراپوستی به معرفی آن ها و مکانسیم عبورپذیری تراپوستی آنها پرداخت شد. نتیجه گیری: فناوری نانو به شکل های مختلف و فرمولاسیون های متفاوت توانایی افزایش عبورپذیری تراپوستی داروها را دارد که بسته به ویژگی های آن ها، ویژگی های فیزیکوشیمیایی داروها و اهداف درمانی می توان هر یک را برگزید.

کلیدواژه‌ها


1-Zhou X, Hao Y, Yuan L, Pradhan S, Shrestha K, Pradhan O, et al. Nano-formulations for transdermal drug delivery: A review. Chinese Chemical Letters. 2018;29(12):1713-24.
2-Prausnitz MR, Langer R. Transdermal drug delivery. Nature Biotechnology. 2008;26:1261.
3-Saadatzadeh A, Salimi A, Zarooni M. Influence of permeation enhancers on the in vitro skin permeation of ketorolac tromethamine through excised rat skin: A mechanistic study2018. 242 p.
4-Ashtikar M, Nagarsekar K, Fahr A. Transdermal delivery from liposomal formulations - Evolution of the technology over the last three decades. Journal of controlled release : official journal of the Controlled Release Society. 2016;242:126-40.
5-Xia X, Hu Z, Marquez MJJocr. Physically bonded nanoparticle networks: a novel drug delivery system. 2005;103(1):21-30.
6-Douglas S, Davis S, Illum LJCritdcs. Nanoparticles in drug delivery. 1987;3(3):233-61.
7-Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug development and industrial pharmacy. 2002;28(1):1-13.
8-            Kreuter J. Nanoparticles and nanocapsules--new dosage forms in the nanometer size range. Pharmaceutica acta Helvetiae. 1978;53(2):33-9.
9-            Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WEJJocr. Biodegradable polymeric nanoparticles as drug delivery devices. 2001;70(1-2):1-20.
10-Cho K,Wang X, Nie S, Shin DMJCcr. Therapeutic nanoparticles for drug delivery in cancer.2008;14(5):1310-6.
11-Farokhzad OC, Langer RJAn. Impact of nanotechnology on drug delivery. 2009;3(1):16-20.
12-Kumari A, Yadav SK, Yadav SCJC, Biointerfaces sB. Biodegradable polymeric nanoparticles based drug delivery systems. 2010;75(1):1-18.
13-Sun C, Lee JS, Zhang MJAddr. Magnetic nanoparticles in MR imaging and drug delivery. 2008;60(11):1252-65.
14-Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, et al. Nano-graphene oxide for cellular imaging and drug delivery. 2008;1(3):203-12.
15-De Jong WH, Borm PJJIjon. Drug delivery and nanoparticles: applications and hazards. 2008;3(2):133.
16-Hamidi M, Azadi A, Rafiei PJAddr. Hydrogel nanoparticles in drug delivery. 2008;60(15):1638-49.
17- Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría JJNt. Magnetic nanoparticles for drug delivery. 2007;2(3):22-32.
18- Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-YJAddr. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. 2008;60(11):1278-88.
19-Teymourian H, Salimi A, Khezrian SJB, Bioelectronics. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. 2013;49:1-8.
20- Salimi A, Motaharitabar E, Goudarzi M, Rezaie A, Kalantari HJJjonpp. Toxicity evaluation of microemulsion (nano size) of sour cherry kernel extract for the oral bioavailability enhancement. 2014;9(1):16.
21-Honary S, Zahir FJTJoPR. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). 2013;12(2):255-64.
22-Honary S, Zahir FJTJoPR. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). 2013;12(2):265-73.
23-Moghassemi S, Hadjizadeh AJJocr. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. 2014;185:22-36.
24-Sosnik A, das Neves J, Sarmento BJPiPS. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. 2014;39(12):2030-75.
25-Sagar GH, Arunagirinathan M, Bellare JR. Self-assembled surfactant nano-structures important in drug delivery: a review. 2007.
26-Luo Y, Wang QJJoAPS. Zein‐based micro‐and nano‐particles for drug and nutrient delivery: A review. 2014;131(16).
27-Ma P, Mumper RJJNt. Anthracycline nano-delivery systems to overcome multiple drug resistance: a comprehensive review. 2013;8(3):313-31.
28-Koushik O, Rao Y, Kumar P, Karthikeyan RJJNN. Nano drug delivery systems to overcome cancer drug resistance—a review. 2016;7(378):2.
29-Goonoo N, Bhaw-Luximon A, Ujoodha R, Jhugroo A, Hulse GK, Jhurry DJJocr. Naltrexone: A review of existing sustained drug delivery systems and emerging nano-based systems. 2014;183:154-66.
30-Mazibuko Z, Choonara YE, Kumar P, Du Toit LC, Modi G, Naidoo D, et al. A review of the potential role of nano-enabled drug delivery technologies in amyotrophic lateral sclerosis: lessons learned from other neurodegenerative disorders. 2015;104(4):1213-29.
31-Adibkia K, Barzegar-Jalali M, Nokhodchi A, Siahi Shadbad M, Omidi Y, Javadzadeh Y, et al. A review on the methods of preparation of pharmaceutical nanoparticles. 2009;15(4):303-14.
32-Lohani A, Verma A, Joshi H, Yadav N, Karki NJId. Nanotechnology-based cosmeceuticals. 2014;2014.
33-Honeywell-Nguyen PL, Bouwstra JA. Vesicles as a tool for transdermal and dermal delivery. Drug discovery today Technologies. 2005;2(1):67-74.
34-Gregoriadis G, Florence AT. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs. 1993;45(1):15-28.
35-Karami N, Moghimipour E, Salimi A. Liposomes as a Novel Drug Delivery System: Fundamental and Pharmaceutical Application DEFINITION AND HISTORY2018.
36-Mezei M, Gulasekharam V. Liposomes--a selective drug delivery system for the topical route of administration. Lotion dosage form. Life sciences. 1980;26(18):1473-7.
37-Eloy JO, Claro de Souza M, Petrilli R, Barcellos JP, Lee RJ, Marchetti JM. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids and surfaces B, Biointerfaces. 2014;123:345-63.
38-Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale research letters. 2013;8(1):102.
39-Wagner A, Vorauer-Uhl KJJodd. Liposome technology for industrial purposes. 2011;2011.
40-Bangham AD. Surrogate cells or trojan horses. The discovery of liposomes. 1995;17(12):1081-8.
41-Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG, et al. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. International journal of nanomedicine. 2015;10:5837-51.
42-Ning M, Gu Z, Pan H, Yu H, Xiao K. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antifungal drug clotrimazole. 2005.
43-Shehata T, Ogawara K, Higaki K, Kimura T. Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. International journal of pharmaceutics. 2008;359(1-2):272-9.
44- Benech RO, Kheadr EE, Laridi R, Lacroix C, Fliss I. Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Applied and environmental microbiology. 2002;68(8):3683-90.
45-Laouini A, Charcosset C, Fessi H, Holdich R, Vladisavljević G. Preparation of liposomes: A novel application of microengineered membranes-From laboratory scale to large scale2013. 272-8 p.
46-Kirjavainen M, Urtti A, Jaaskelainen I, Suhonen TM, Paronen P, Valjakka-Koskela R, et al. Interaction of liposomes with human skin in vitro--the influence of lipid composition and structure. Biochimica et biophysica acta. 1996;1304(3):179-89.
47-Kirjavainen M, Mönkkönen J, Saukkosaari M, Valjakka-Koskela R, Kiesvaara J, Urtti AJJocr. Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. 1999;58(2):207-14.
48-El Maghraby GM, Williams AC, Barry BW. Can drug-bearing liposomes penetrate intact skin? The Journal of pharmacy and pharmacology. 2006;58(4):415-29.
49-Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochimica et biophysica acta. 1992;1104(1):226-32.
50-Romero EL, Morilla MJ. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. International journal of nanomedicine. 2013;8:3171-86.
51-Kumar A, Pathak K, Bali V. Ultra-adaptable nanovesicular systems: a carrier for systemic delivery of therapeutic agents. Drug Discov Today. 2012;17(21-22):1233-41.
52-Aggarwal N, Goindi S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis--dermatophytosis. International journal of pharmaceutics. 2012;437(1-2):277-87.
53-Kateh Shamshiri M, Momtazi-Borojeni AA, Khodabandeh Shahraky M, Rahimi F. Lecithin soybean phospholipid nano-transfersomes as potential carriers for transdermal delivery of the human growth hormone. 2019;120(6):9023-33.
54-Yang H, Wu X, Zhou Z, Chen X, Kong M. Enhanced transdermal lymphatic delivery of doxorubicin via hyaluronic acid based transfersomes/microneedle complex for tumor metastasis therapy. International Journal of Biological Macromolecules. 2019;125:9-16.
55-Abd El-Alim SH, Kassem AA, Basha M, Salama A. Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: In vitro and in vivo evaluation. International journal of pharmaceutics. 2019;563:293-303.
56-Waheed A, Aqil M, Ahad A, Imam SS, Moolakkadath T, Iqbal Z, et al. Improved bioavailability of raloxifene hydrochloride using limonene containing transdermal nano-sized vesicles. Journal of Drug Delivery Science and Technology. 2019;52:468-76.
57-Ws Z. Pharmacokinetic Study of Lappaconitine Hydrobromide Transfersomes in Rats by LC-MS2013.
58-Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Evaluation of meloxicam-loaded cationic transfersomes as transdermal drug delivery carriers. AAPS PharmSciTech. 2012;14(1):133-40.
59-Milger K, Felix JF, Voswinckel R, Sommer N, Franco OH, Grimminger F, et al. Sildenafil versus nitric oxide for acute vasodilator testing in pulmonary arterial hypertension. Pulmonary circulation. 2015;5(2):305-12.
60-Badr-Eldin SM, Ahmed OA. Optimized nano-transfersomal films for enhanced sildenafil citrate transdermal delivery: ex vivo and in vivo evaluation. Drug design, development and therapy. 2016;10:1323-33.
61-Rajan R, Vasudevan DT. Effect of permeation enhancers on the penetration mechanism of transfersomal gel of ketoconazole. Journal of advanced pharmaceutical technology & research. 2012;3(2):112-6.
62-Scognamiglio I, De Stefano D, Campani V, Mayol L, Carnuccio R, Fabbrocini G, et al. Nanocarriers for topical administration of resveratrol: a comparative study. International journal of pharmaceutics. 2013;440(2):179-87.
63-Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, et al. Pharmacodynamic study of eprosartan mesylate-loaded transfersomes Carbopol((R)) gel under Dermaroller((R)) on rats with methyl prednisolone acetate-induced hypertension.Biomedicine & pharmacotherapy=Biomedecine & pharmacotherapie. 2017;89:177-84.
64. Planas ME, Gonzalez P, Rodriguez L, Sanchez S, Cevc G. Noninvasive percutaneous induction of topical analgesia by a new type of drug carrier, and prolongation of local pain insensitivity by anesthetic liposomes. Anesthesia and analgesia. 1992;75(4):615-21.
65-Singh D, Pradhan M, Nag M, Singh MRJAc, nanomedicine,, biotechnology. Vesicular system: versatile carrier for transdermal delivery of bioactives. 2015;43(4):282-90.
66-Duangjit S, Pamornpathomkul B, Opanasopit P, Rojanarata T, Obata Y, Takayama K, et al. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. International journal of nanomedicine. 2014;9:2005-17.
67-González-Rodríguez ML, Arroyo CM, Cózar-Bernal MJ, González-R PL, León JM, Calle M, et al. Deformability properties of timolol-loaded transfersomes based on the extrusion mechanism. Statistical optimization of the process. Drug development and industrial pharmacy. 2016;42(10):1683-94.
68- Choi MJ, Maibach HI. Elastic vesicles as topical/transdermal drug delivery systems. International journal of cosmetic science. 2005;27(4):211-21.
69-Subongkot T, Ngawhirunpat T. Effect of liposomal fluidity on skin permeation of sodium fluorescein entrapped in liposomes. International journal of nanomedicine. 2015;10:4581-92.
70-Salimi A, Mohammad Soleymani S. Transfollicular Drug Delivery Systems. 2018;13(3):e82403.
71-Yasar H. Non-Invasive Vaccination by Nanoparticle-based Messenger RNA (mRNA) Delivery via the Transfollicular Route. 2019.
72-Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes — novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. Journal of Controlled Release. 2000;65(3):403-18.
73-Mbah CC, Builders PF, Attama AA. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin Drug Deliv. 2014;11(1):45-59.
74-Dayan N, Touitou E. Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes. Biomaterials. 2000;21(18):1879-85.
75-Godin B, Touitou E. Erythromycin ethosomal systems: physicochemical characterization and enhanced antibacterial activity. Current drug delivery. 2005;2(3):269-75.
76-Touitou E. Compositions for applying active substances to or through the skin. Google Patents; 1996.
77-Touitou E. Composition for applying active substances to or through the skin. Google Patents; 1998.
78-Dubey V, Mishra D, Dutta T, Nahar M, Saraf DK, Jain NK. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. Journal of controlled release : official journal of the Controlled Release Society. 2007;123(2):148-54.
79-Dubey V, Mishra D, Jain NK. Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2007;67(2):398-405.
80-Dubey V, Mishra D, Nahar M, Jain V, Jain NK. Enhanced transdermal delivery of an anti-HIV agent via ethanolic liposomes. Nanomedicine. 2010;6(4):590-6.
81-Jain S, Tiwary AK, Sapra B, Jain NK. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech. 2007;8(4):E111.
82-Rao Y, Zheng F, Zhang X, Gao J, Liang W. In vitro percutaneous permeation and skin accumulation of finasteride using vesicular ethosomal carriers. AAPS PharmSciTech. 2008;9(3):860-5.
83-Ahmed TA, El-Say KM, Aljaeid BM, Fahmy UA, Abd-Allah FI. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation. International journal of pharmaceutics. 2016;500(1):245-54.
84-Patel HK, Barot BS, Parejiya PB, Shelat PK, Shukla A. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: ex vivo permeation and skin irritation studies. Colloids and surfaces B, Biointerfaces. 2013;102:86-94.
85-Danno K, Horio T, Ozaki M, Imamura S. Topical 8-methoxypsoralen photochemotherapy of psoriasis: a clinical study. The British journal of dermatology. 1983;108(5):519-24.
86-Garg BJ, Garg NK, Beg S, Singh B, Katare OP. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: formulation optimization, in vitro evaluation and preclinical assessment. Journal of Drug Targeting. 2016;24(3):233-46.
87- Lin MY, Hayden MKJCcm. Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus: recognition and prevention in intensive care units. 2010;38:S335-S44.
88-Mohammed MI, Makky AMA, Teaima MHM, Abdellatif MM, Hamzawy MA, Khalil MAF. Transdermal delivery of vancomycin hydrochloride using combination of nano-ethosomes and iontophoresis: in vitro and in vivo study. Drug Delivery. 2016;23(5):1558-64.
89- Marto J, Vitor C, Guerreiro A, Severino C, Eleutério C, Ascenso A, et al. Ethosomes for enhanced skin delivery of griseofulvin. Colloids and Surfaces B: Biointerfaces. 2016;146:616-23.
90-Dave V, Kumar D, Lewis S, Paliwal SJIjodd. Ethosome for enhanced transdermal drug delivery of aceclofenac. 2010;2(1).
91-Maxwell A, Priya SJRJoP, Technology. Nanosized Ethosomes-A Promising Vesicular Drug Carrier for Transdermal Drug Delivery. 2019;12(2):876-80.
92-Zhang Y, Zhang N, Song H, Li H, Wen J, Tan X, et al. Design, characterization and comparison of transdermal delivery of colchicine via borneol-chemically-modified and borneol-physically-modified ethosome. 2019;26(1):70-7.
93-Priyanka K, Singh S. A review on skin targeted delivery of bioactives as ultradeformable vesicles: overcoming the penetration problem. Current drug targets. 2014;15(2):184-98.
94-Li G, Fan Y, Fan C, Li X, Wang X, Li M, et al. Tacrolimus-loaded ethosomes: physicochemical characterization and in vivo evaluation. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2012;82(1):49-57.
95-Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. International journal of pharmaceutics. 2007;332(1-2):1-16.
96-Handjani-Vila RM, Ribier A, Rondot B, Vanlerberghie G. Dispersions of lamellar phases of non-ionic lipids in cosmetic products. International journal of cosmetic science. 1979;1(5):303-14.
97-Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. International journal of pharmaceutics. 2004;269(1):1-14.
98-Vyas SP, Khar RK. Targeted & controlled drug delivery : novel carrier systems. New Delhi, India: CBS Publishers & Distributors; 2004.
99-van Hal DA, Bouwstra JA, van Rensen A, Jeremiasse E, de Vringer T, Junginger HE. Preparation and Characterization of Nonionic Surfactant Vesicles. Journal of Colloid and Interface Science. 1996;178(1):263-73.
100-Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. Journal of Controlled Release. 1994;30(1):1-15.
101-Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F, et al. Niosomes from 80s to present: the state of the art. Advances in colloid and interface science. 2014;205:187-206.
102-Tu YS, Fu JW, Sun DM, Zhang JJ, Yao N, Huang DE, et al. Preparation, characterisation and evaluation of curcumin with piperine-loaded cubosome nanoparticles. Journal of Microencapsulation. 2014;31(6):551-9.
103-Muzzalupo R, Tavano L, Cassano R, Trombino S, Ferrarelli T, Picci N. A new approach for the evaluation of niosomes as effective transdermal drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics. 2011;79(1):28-35.
104-Mostafavi M, Khazaeli P, Sharifi I, Farajzadeh S, Sharifi H, Keyhani A, et al. A Novel Niosomal Combination of Selenium Coupled with Glucantime against Leishmania tropica. The Korean journal of parasitology. 2019;57(1):1-8.
105-Pokhrel R, Bhattarai N, Baral P, Gerstman BS, Park JH, Handfield M, et al. Molecular mechanisms of pore formation and membrane disruption by the antimicrobial lantibiotic peptide Mutacin 1140. Physical chemistry chemical physics : PCCP. 2019;21(23):12530-9.
106-Gotz F, Perconti S, Popella P, Werner R, Schlag M. Epidermin and gallidermin: Staphylococcal lantibiotics. International journal of medical microbiology : IJMM. 2014;304(1):63-71.
107-Manosroi A, Khanrin P, Lohcharoenkal W, Werner RG, Götz F, Manosroi W, et al. Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. International journal of pharmaceutics. 2010;392(1):304-10.
108-Lu B, Huang Y, Chen Z, Ye J, Xu H, Chen W, et al. Niosomal Nanocarriers for Enhanced Skin Delivery of Quercetin with Functions of Anti-Tyrosinase and Antioxidant. Molecules (Basel, Switzerland). 2019;24(12).
109-Alsarra IA, Bosela A, Ahmed S, Mahrous GJEJoP, Biopharmaceutics. Proniosomes as a drug carrier for transdermal delivery of ketorolac. 2005;59(3):485-90.
110-Patel KK, Kumar P, Thakkar HPJAP. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. 2012;13(4):1502-10.
111-Varshosaz J, Pardakhty A, Mohsen S, Baharanchi HJDd. Sorbitan monopalmitate-based proniosomes for transdermal delivery of chlorpheniramine maleate. 2005;12(2):75-82.
112-Solanki AB, Parikh JR, Parikh RH, Patel MRJAJoPS. Evaluation of different compositions of niosomes to optimize aceclofenac transdermal delivery. 2010;5(3):87-95.
113-Manosroi A, Chankhampan C, Manosroi W, Manosroi JJEJoPS. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment. 2013;48(3):474-83.
114-Paolino D, Muzzalupo R, Ricciardi A, Celia C, Picci N, Fresta MJBm. In vitro and in vivo evaluation of Bola-surfactant containing niosomes for transdermal delivery. 2007;9(4):421-33.
115-Tavano L, Gentile L, Rossi CO, Muzzalupo RJC, Biointerfaces SB. Novel gel-niosomes formulations as multicomponent systems for transdermal drug delivery. 2013;110:281-8.
116-Choi M, Maibach HJSp, physiology. Liposomes and niosomes as topical drug delivery systems. 2005;18(5):209-19.
117-Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Progress in lipid research. 2003;42(1):1-36.
118-Mali N, Darandale S, Vavia P. Niosomes as a vesicular carrier for topical administration of minoxidil: formulation and in vitro assessment. Drug delivery and translational research. 2013;3(6):587-92.
119-Tavano L, Alfano P, Muzzalupo R, de Cindio B. Niosomes vs microemulsions: new carriers for topical delivery of Capsaicin. Colloids and surfaces B, Biointerfaces. 2011;87(2):333-9.
120-Laouini A, Charcosset C, Fessi H, Holdich RG, Vladisavljevic GT. Preparation of liposomes: a novel application of microengineered membranes--from laboratory scale to large scale. Colloids and surfaces B, Biointerfaces. 2013;112:272-8.
121-Fahr A, Muller R. Invasomes for therapy of disorders, their preparation and use. Google Patents; 2003.
122-Shah SM, Ashtikar M, Jain AS, Makhija DT, Nikam Y, Gude RP, et al. LeciPlex, invasomes, and liposomes: A skin penetration study. International journal of pharmaceutics. 2015;490(1-2):391-403.
123-Dwivedi M, Sharma V, Pathak K. Pilosebaceous targeting by isotretenoin-loaded invasomal gel for the treatment of eosinophilic pustular folliculitis: optimization, efficacy and cellular analysis. Drug development and industrial pharmacy. 2017;43(2):293-304.
124-Kamran M, Ahad A, Aqil M, Imam SS, Sultana Y, Ali A. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment. International journal of pharmaceutics. 2016;505(1):147-58.
125-Prasanthi D, K. Lakshmi P. Iontophoretic Transdermal Delivery of Finasteride in Vesicular Invasomal Carriers. Pharmaceutical Nanotechnology. 2013;1(2):136-50.
126-Zhang P, Huang H, Banerjee S, Clarkson GJ, Ge C, Imberti C, et al. Nucleus-Targeted Organoiridium–Albumin Conjugate for Photodynamic Cancer Therapy. 2019;58(8):2350-4.
127-Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A. Temoporfin-loaded invasomes: Development, characterization and in vitro skin penetration studies. Journal of Controlled Release. 2008;127(1):59-69.
128-El-Nabarawi MA, Shamma RN, Farouk F, Nasralla SMJAP. Dapsone-Loaded Invasomes as a Potential Treatment of Acne: Preparation, Characterization, and In Vivo Skin Deposition Assay. 2018;19(5):2174-84.
129-Verma DD, Fahr A. Synergistic penetration enhancement effect of ethanol and phospholipids on the topical delivery of cyclosporin A. Journal of controlled release : official journal of the Controlled Release Society. 2004;97(1):55-66.
130-Verma DD, Verma S, McElwee KJ, Freyschmidt-Paul P, Hoffman R, Fahr A. Treatment of alopecia areata in the DEBR model using Cyclosporin A lipid vesicles. European journal of dermatology : EJD. 2004;14(5):332-8.
131-Chen M, Liu X, Fahr A. Skin delivery of ferulic acid from different vesicular systems. Journal of biomedical nanotechnology. 2010;6(5):577-85.
132-Chen M, Liu X, Fahr A. Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: In vitro study with finite and infinite dosage application. International journal of pharmaceutics. 2011;408(1-2):223-34.
133-Vaddi HK, Ho PC, Chan YW, Chan SY. Terpenes in ethanol: haloperidol permeation and partition through human skin and stratum corneum changes. Journal of Controlled Release. 2002;81(1):121-33.
134-Sinico C, Fadda AM. Vesicular carriers for dermal drug delivery. Expert Opin Drug Deliv. 2009;6(8):813-25.
135-Yang L, He J, Wen Y, Yi W, Li Q, Lin L, et al. Nanoscale Photodynamic Agents for Colorectal Cancer Treatment: A Review. Journal of biomedical nanotechnology. 2016;12(7):1348-73.
136-Ranganathan A, Campo J, Myerson J, Shuvaev V, Zern B, Muzykantov V, et al. Fluorescence Microscopy Imaging Calibration for Quantifying Nanocarrier Binding to Cells During Shear Flow Exposure. Journal of biomedical nanotechnology. 2017;13(6):737-45.
137-Zhang K, Yang P-P, Zhang J-P, Wang L, Wang H. Recent advances of transformable nanoparticles for theranostics. Chinese Chemical Letters. 2017;28(9):1808-16.
138-Vyas SP, Rai S, Paliwal R, Gupta PN, Khatri K, Goyal AK, et al. Solid Lipid Nanoparticles (SLNs) as a Rising Tool in Drug Delivery Science: One Step Up in Nanotechnology. Current Nanoscience. 2008;4(1):30-44.
139-Wang K, Yang C, Ye J, Zeng F, Duan Y, Zheng Y, et al. Inhibition Activity of Herpes Virus (HSV) Replication by α-TIF siRNA-Loaded PLGA-TPGS Nanoparticles In Vitro and In Vivo. Journal of biomedical nanotechnology. 2017;13(6):717-26.
140-Pardeike J, Hommoss A, Muller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International journal of pharmaceutics. 2009;366(1-2):170-84.
141-Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2-3):165-96.
142-Castelli F, Puglia C, Sarpietro MG, Rizza L, Bonina F. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. International journal of pharmaceutics. 2005;304(1-2):231-8.
143-Teixeira MC, Carbone C, Souto EB. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Progress in lipid research. 2017;68:1-11.
144-Siafaka P, Betsiou M, Tsolou A, Angelou E, Agianian B, Koffa M, et al. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells. Journal of materials science Materials in medicine. 2015;26(12):275.
145-Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. Journal of controlled release : official journal of the Controlled Release Society. 2005;107(2):215-28.
146-Siekmann B, Westesen K. Preparation and Physicochemical Characterization of Aqueous Dispersions of Coenzyme Q10 Nanoparticles. Pharmaceutical Research. 1995;12(2):201-8.
147-Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles. Journal of biotechnology. 2004;113(1-3):151-70.
148-Escobar-Chávez JJ, Díaz-Torres R, Rodríguez-Cruz IM, Domínguez-Delgado CL, Morales RS, Ángeles-Anguiano E, et al. Nanocarriers for transdermal drug delivery. 2012;1:3.
149-Uchechi O, Ogbonna JD, Attama AA. Nanoparticles for dermal and transdermal drug delivery.  Application of Nanotechnology in Drug Delivery: IntechOpen; 2014.
150-Wissing S, Muller R. The influence of the crystallinity of lipid nanoparticles on their occlusive properties. International journal of pharmaceutics. 2002;242(1-2):377-9.
151-Winter E, Dal Pizzol C, Locatelli C, Crezkynski-Pasa TB. Development and Evaluation of Lipid Nanoparticles for Drug Delivery: Study of Toxicity In, Vitro and In Vivo. Journal of nanoscience and nanotechnology. 2016;16(2):1321-30.
152-Nair R, Arun Kumar K, Vishnu Priya K, Sevukarajan MJJBSR. Recent advances in solid lipid nanoparticle based drug delivery systems. 2011;3(2):368.
153-Jenning V, Thunemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. International journal of pharmaceutics. 2000;199(2):167-77.
154-Villalobos-Hernandez JR, Muller-Goymann CC. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale. International journal of pharmaceutics. 2006;322(1-2):161-70.
155-Sun J, Zhang S, Jiang S, Bai W, Liu F, Yuan H, et al. Gadolinium-Loaded Solid Lipid Nanoparticles as a Tumor-Absorbable Contrast Agent for Early Diagnosis of Colorectal Tumors Using Magnetic Resonance Colonography. Journal of biomedical nanotechnology. 2016;12(9):1709-23.
156-Guo D, Dou D, Li X, Zhang Q, Bhutto ZA, Wang L. Ivermection-loaded solid lipid nanoparticles: preparation, characterisation, stability and transdermal behaviour. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(2):255-62.
157-Ravi G, Gupta VN, Balamuralidhara VJRJoP, Technology. Rivastigmine Tartrate Solid Lipid Nanoparticles Loaded Transdermal Film: An In vivo study. 2018;11(1):227-.
158-Patel KK, Gade S, Anjum MM, Singh SK, Maiti P, Agrawal AK, et al. Effect of penetration enhancers and amorphization on transdermal permeation flux of raloxifene-encapsulated solid lipid nanoparticles: an ex vivo study on human skin. Applied Nanoscience. 2019.
159-Zhang YT, Han MQ, Shen LN, Zhao JH, Feng NP. Solid Lipid Nanoparticles Formulated for Transdermal Aconitine Administration and Evaluated In Vitro and In Vivo. Journal of biomedical nanotechnology. 2015;11(2):351-61.
160-Lee MH, Shin GH, Park HJJJoAPS. Solid lipid nanoparticles loaded thermoresponsive pluronic–xanthan gum hydrogel as a transdermal delivery system. 2018;135(11):46004.
161-Gu Y, Yang M, Tang X, Wang T, Yang D, Zhai G, et al. Lipid nanoparticles loading triptolide for transdermal delivery: mechanisms of penetration enhancement and transport properties. 2018;16(1):68.
162-Sengar V, Jyoti K, Jain UK, Katare OP, Chandra R, Madan J. Lipid nanoparticles for topical and transdermal delivery of pharmaceuticals and cosmeceuticals: A glorious victory.  Lipid Nanocarriers for Drug Targeting: Elsevier; 2018. p. 413-36.
163-Rostamkalaei SS, Akbari J, Saeedi M, Morteza-Semnani K, Nokhodchi AJC, Biointerfaces SB. Topical gel of metformin solid lipid nanoparticles: A hopeful promise as a dermal delivery system. 2019;175:150-7.
164-Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54 Suppl 1:S131-55.
165-Attama AA, Momoh MA, Builders PFJRaindcs. Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. 2012;5:107-40.
166-Doktorovova S, Souto EB. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: a comprehensive review. Expert Opin Drug Deliv. 2009;6(2):165-76.
167-Aliasgharlou L, Ghanbarzadeh S, Azimi H, Zarrintan MH, Hamishehkar HJApb. Nanostructured lipid carrier for topical application of N-acetyl glucosamine. 2016;6(4):581.
168-Mendes IT, Ruela ALM, Carvalho FC, Freitas JTJ, Bonfilio R, Pereira GR. Development and characterization of nanostructured lipid carrier-based gels for the transdermal delivery of donepezil. Colloids and Surfaces B: Biointerfaces. 2019;177:274-81.
169-Mennini N, Cirri M, Maestrelli F, Mura P. Comparison of liposomal and NLC (nanostructured lipid carrier) formulations for improving the transdermal delivery of oxaprozin: Effect of cyclodextrin complexation. International journal of pharmaceutics. 2016;515(1):684-91.
170-Elnaggar YS, El-Massik MA, Abdallah OYJIjon. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles. 2011;6:3195.
171-Vitorino C, Almeida J, Gonçalves L, Almeida A, Sousa J, Pais AJJocr. Co-encapsulating nanostructured lipid carriers for transdermal application: from experimental design to the molecular detail. 2013;167(3):301-14.
172-Vitorino C, Almeida A, Sousa J, Lamarche I, Gobin P, Marchand S, et al. Passive and active strategies for transdermal delivery using co-encapsulating nanostructured lipid carriers: in vitro vs. in vivo studies. 2014;86(2):133-44.
173-Fan X, Chen J, Shen QJIjop. Docetaxel–nicotinamide complex-loaded nanostructured lipid carriers for transdermal delivery. 2013;458(2):296-304.
174-Souto EB, Muller RJD, SCIENCES TP. Lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers) for cosmetic, dermal, and transdermal applications. 2007;166:213.
175-Gu Y, Tang X, Yang M, Yang D, Liu JJIjop. Transdermal drug delivery of triptolide-loaded nanostructured lipid carriers: Preparation, pharmacokinetic, and evaluation for rheumatoid arthritis. 2019;554:235-44.
176-Zhao X, Sun Y, Li ZJDd, development, therapy. Topical anesthesia therapy using lidocaine-loaded nanostructured lipid carriers: tocopheryl polyethylene glycol 1000 succinate-modified transdermal delivery system. 2018;12:4231.
177-Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug target insights. 2007;2:147-57.
178-Voon SH, Tiew SX, Kue CS, Lee HB, Kiew LV, Misran M, et al. Chitosan-Coated Poly(lactic-co-glycolic acid)-Diiodinated boron-Dipyrromethene Nanoparticles Improve Tumor Selectivity and Stealth Properties in Photodynamic Cancer Therapy. Journal of biomedical nanotechnology. 2016;12(7):1431-52.
179-Zhao H, Wang Y, Peng J, Zhang L, Qu Y, Chu B, et al. Biodegradable self-assembled micelles based on MPEG-PTMC copolymers: An ideal drug delivery system for vincristine. 2017;13(4):427-36.
180-Pegoraro C, MacNeil S, Battaglia G. Transdermal drug delivery: from micro to nano. Nanoscale. 2012;4(6):1881-94.
181-Edlich RF, Winters KL, Lim HW, Cox MJ, Becker DG, Horowitz JH, et al. Photoprotection by sunscreens with topical antioxidants and systemic antioxidants to reduce sun exposure. Journal of long-term effects of medical implants. 2004;14(4):317-40.
182-Subash S, Subramanian P. Morin a flavonoid exerts antioxidant potential in chronic hyperammonemic rats: a biochemical and histopathological study. Molecular and cellular biochemistry. 2009;327(1-2):153-61.
183-Shetty PK, Venuvanka V, Jagani HV, Chethan GH, Ligade VS, Musmade PB, et al. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. International journal of nanomedicine. 2015;10:6477-91.
184-Rother KI. Diabetes treatment--bridging the divide. The New England journal of medicine. 2007;356(15):1499-501.
185-Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The Lancet. 1998;352(9131):837-53.
186-Rastogi R, Anand S, Koul V. Electroporation of polymeric nanoparticles: an alternative technique for transdermal delivery of insulin. Drug development and industrial pharmacy. 2010;36(11):1303-11.
187-Lee P-W, Hsu S-H, Tsai J-S, Chen F-R, Huang P-J, Ke C-J, et al. Multifunctional core-shell polymeric nanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking. 2010;31(8):2425-34.
188-Desai PR, Marepally S, Patel AR, Voshavar C, Chaudhuri A, Singh MJJocr. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. 2013;170(1):51-63.
189-DeMuth PC, Su X, Samuel RE, Hammond PT, Irvine DJJAM. Nano‐layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. 2010;22(43):4851-6.
190-Rancan F, Papakostas D, Hadam S, Hackbarth S, Delair T, Primard C, et al. Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res. 2009;26(8):2027-36.
191-McConnell KI, Shamsudeen S, Meraz IM, Mahadevan TS, Ziemys A, Rees P, et al. Reduced cationic nanoparticle cytotoxicity based on serum masking of surface potential. 2016;12(1):154-64.
192-Georgakilas V, Perman JA, Tucek J, Zboril R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews. 2015;115(11):4744-822.
193-Xu ZP, Zeng QH, Lu GQ, Yu ABJCES. Inorganic nanoparticles as carriers for efficient cellular delivery. 2006;61(3):1027-40.
194-Degim IT, Burgess DJ, Papadimitrakopoulos F. Carbon nanotubes for transdermal drug delivery. Journal of Microencapsulation. 2010;27(8):669-81.
195-Lee JH, Nan AJJodd. Combination drug delivery approaches in metastatic breast cancer. 2012;2012.
196-Parekh HS. The Advance of Dendrimers - A Versatile Targeting Platform for Gene/Drug Delivery. Current Pharmaceutical Design. 2007;13(27):2837-50.
197-Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6(8):427-36.
198-D'Emanuele A, Attwood D. Dendrimer-drug interactions. Adv Drug Deliv Rev. 2005;57(15):2147-62.
199-Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain N, et al. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. 2003;90(3):335-43.
200-Filipowicz A, Wołowiec SJIjop. Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers. 2011;408(1-2):152-6.
201-Borowska K, Laskowska B, Magoń A, Mysliwiec B, Pyda M, Wołowiec SJIjop. PAMAM dendrimers as solubilizers and hosts for 8-methoxypsoralene enabling transdermal diffusion of the guest. 2010;398(1-2):185-9.
202-Salimi AJAJoPFftafAJP. Preparation and evaluation of celecoxib nanoemulsion for ocular drug delivery. 2017;11(03).
203-Chevalier Y, Bolzinger M-A. Micelles and Nanoemulsions.  Nanocosmetics: Springer; 2019. p. 47-72.
204-Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, et al. Nanoemulsion: Concepts, development and applications in drug delivery. Journal of controlled release : official journal of the Controlled Release Society. 2017;252:28-49.
205-Sinha P, Srivastava S, Mishra N, Singh DK, Luqman S, Chanda D, et al. Development, optimization, and characterization of a novel tea tree oil nanogel using response surface methodology. 2016;42(9):1434-45.
206-Sonneville-Aubrun O, Simonnet JT, L'Alloret F. Nanoemulsions: a new vehicle for skincare products. Advances in colloid and interface science. 2004;108-109:145-9.
207-Rai VK, Mishra N, Yadav KS, Yadav NPJJocr. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. 2018;270:203-25.
208-Shakeel F, Baboota S, Ahuja A, Ali J, Aqil M, Shafiq SJAP. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. 2007;8(4):191.
209-Baboota S, Shakeel F, Ahuja A, Ali J, Shafiq SJAp. Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. 2007;57(3):315-32.
210-Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq SJJon. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. 2008;6(1):8.
211-Shakeel F, Ramadan WJC, Biointerfaces SB. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. 2010;75(1):356-62.
212-Yang Q, Liu S, Gu Y, Tang X, Wang T, Wu J, et al. Development of sulconazole-loaded nanoemulsions for enhancement of transdermal permeation and antifungal activity. 2019;14:3955.
213-Alkilani AZ, Hamed R, Al-Marabeh S, Kamal A, Abu-Huwaij R, Hamad IJJoDDS, et al. Nanoemulsion-based film formulation for transdermal delivery of carvedilol. 2018;46:122-8.
214-Kaur R, Ajitha MJEJoPS. Transdermal delivery of fluvastatin loaded nanoemulsion gel: Preparation, characterization and in vivo anti-osteoporosis activity. 2019:104956.
215-Shakeel F, Ramadan W, Gargum HM, Singh R. Preparation and in vivo evaluation of indomethacin loaded true nanoemulsions. Sci Pharm. 2010;78(1):47-56.
216-Lawrence MJ, Rees GDJAddr. Microemulsion-based media as novel drug delivery systems. 2000;45(1):89-121.
217-Khurana S, Jain NK, Bedi PM. Nanoemulsion based gel for transdermal delivery of meloxicam: physico-chemical, mechanistic investigation. Life sciences. 2013;92(6-7):383-92.
218-Santos P, Watkinson A, Hadgraft J, Lane MJSp, physiology. Application of microemulsions in dermal and transdermal drug delivery. 2008;21(5):246-59.
219-Zhou H, Yue Y, Liu G, Li Y, Zhang J, Gong Q, et al. Preparation and characterization of a lecithin nanoemulsion as a topical delivery system. Nanoscale research letters. 2009;5(1):224-30.
220-Kogan A, Garti NJAic, science i. Microemulsions as transdermal drug delivery vehicles. 2006;123:369-85.
221-Salimi A, Jafarinezhad S, Kalantari AJJJoNPP. Transdermal Delivery of Ketorolac Tromethamine Using Microemulsion Vehicles. 2018;13(4).
222-Siqueira Leite CB, Coelho JM, Muehlmann LA, Azevedo RB, Sousa MHJCN. Microemulsions as Platforms for Transdermal Delivery of Hydrophilic Drugs-A Review. 2018;14(3):170-8.
223-Salimi AJAJoPFftafAJP. Enhanced Stability and Dermal Delivery of Hydroquinone Using Microemulsion-based System. 2018;11(04).
224-Valenta C, Schultz K. Influence of carrageenan on the rheology and skin permeation of microemulsion formulations. Journal of controlled release : official journal of the Controlled Release Society. 2004;95(2):257-65.
225-Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev. 2002;54 Suppl 1:S77-98.
226-Makhmalzadeh B, Salimi A, Nazarian A, Esfahani GJIJOPS, research. formulation, characterization and in vitro/ex vivo evaluation of trolamine salicylate-loaded transfersomes as transdermal drug delivery carriers. 2018;9(9):3725-31.