Effect of Magnetic Fields on Dose Distribution, Range of Photon Beams and Charged Particles in Radiation Therapy

Document Type : Review


1 Professor of Medical Physics and Radiation.TherapyDepartment of Medical Physics and Radiotherapy, Ahvaz University of Medical Sciences, Ahvaz, Iran.

2 Assistant Professor of Medical Physics.Department of Medical Physics and Radiotherapy, Ahvaz University of Medical Sciences, Ahvaz, Iran.

3 Assistant Professor of Medical Physics.Department of Radiology Technology. Ahvaz University of Medical Sciences, Ahvaz, Iran.


Background and Objective: Radiotherapy in one of the main methods of tumor treatment and control. Today, the integrated radiation therapy-MRI systems have been developed. The magnetic fields of imaging systems can have effects on dose distribution in target volume. Therefore, the aim of this study was to investigate the effect of magnetic fields on dose distribution in radiation therapy.
Materials and Methods: This is a review article which was done through searching the google scholar and PubMed data bases by expressions: radiation therapy and magnetic field photon therapy and magnetic field, electron therapy and magnetic field, proton therapy and magnetic field. Related research papers were sorted and their results were summarized.
Results: Magnetic fields can change the path of charged particles in the medium can enforce the primary charged particles, secondary electrons and positrons to experience a spiral path, if applied perpendicular to beam axes which leads to produce a peak dose. Longitudinal magnetic field decreases the penumbra and lateral deflection of electrons.
Conclusion: Magnetic fields influence the dose distribution in radiotherapy and modification of treatment plan is essential when applying integrated MRI-radiation therapy systems. Also, applying an intensity controlled transverse magnetic field can be an inexpensive approach to adjusting the maximum dose of charged particles in tumor volume while protecting normal tissues.


1-Price P., Sikora K., Treatment of Cancer, 5th (edn), Arnold Hodder, London (2008).
2-Chu W.  T., Ludewigt B. A., Renner T. R. Instrumentation for treatment of cancer using proton and light ion beams.  Rev.  Sci.  Instrum. 1993; 64(8):2055-2122.  DOI: 10.1063/1.1143946.
3-Brahme A. Design Principles and Clinical Possibilities With a new Generation of Radiation Therapy Equipment. ACTA ONCOLOGICA. 1987; 26(6): 403-412.
4-Khan Fhaiz M. the physics of the radiation therapy, 4th(edn), Wolters Kluwer Health. 2010.
5-Hollmark M., Uhrdin J., Belkic Dz., Gudowska I and Brahme A. Influence of multiple scattering and energy loss straggling on the absorbed dose distribution of therapeutic light ion beams: I. Analytical pencil beam model. Phys. Med. Biol. 2004; 49(14): 3247-3265. doi:10.1088/0031-9155/49/14/016. Online at stacks.iop.org/PMB/49/3247.
6-Scifoni E., Surdutovich E., Solov’yov A., Pshenichnov I., Mishustin I. and Greiner W. Ion-beam therapy: from electron production in tissue like media to DNA damage estimations. Biological Physics (physics.bio-ph). 2008; 104:104-110. Available at:http://dx.doi.org/10.1063/1.3058968.
7-DePauw N., Dias M.F., Rosenfeld A., Seco J.C. Ion Radiography as a Tool for Patient Set-up & Image Guided Particle Therapy: A Monte Carlo Study. Technology in Cancer Research & Treatment. 2014; 13(1):69-79. DOI: 10.7785/tcrt.2012.500357.
8-Schulte R., Bashkirov V., Li T., Liang Zh., Mueller k., Heimann J et al. Conceptual Design of a Proton Computed Tomography System for Applications in Proton Radiation Therapy. IEEE TRANSACTIONS ON NUCLEAR SCIENCE. 2004; 51(3): 866-872.
9-Pedroni E., Bacher R., Blattmann H., Böhringer T., Coray A., Lomax A., et al. The 200MeV proton therapy project at the Paul Scherrer Institute: Conceptual design and practical realization. Medical Physics. 1995; 22(1):37-53.  Doi: 10.1118/1.597522.
10-Pedroni E. Latest Development in Proton Therapy. Proceedings of EPAC 2000, Vienna, Austria.
11-Raaymakers BW. Raaijmakers AJE., Kotte ANTJ., Jette D. and Lagendijk JJW. Integrating a MRI scanner with a 6MV radiotherapy accelerator: dose deposition in a transverse magnetic field. Phys. Med. Biol. 2004; 49(17): 4109–4118. doi:10.1088/0031-9155/49/17/019.
12-Keyvanloo A., Burke B., Warkentin B., Tadic T., Rathee S., Kirkby C., et al.  Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models. Med. Phys. 2012; 39(10): 6509-6521.
13-Haliday D., Resnick R., Walker J. fundamentals of physics extended. Wiley.com; 2010.
14-Jette D. Magnetic fields with photon beams: Monte Carlo calculations for a model magnetic field. Med. Phys. 2000; 27 (12):2726- 2738. Doi: 10.1118/1.1326447.
15-Reiffel L., Li A., Chu J., Wheatley RW., Naqvi S., Pillsbury R., Saxena A. Control of photon beam dose profiles by localized transverse magnetic fields. Phys. Med. Biol. 2000; 45(12): 177-182.
15-Wadi-Ramahi S.J., Naqvi S.A., Chu J.C. Evaluating the effectiveness of a longitudinal magnetic field in reducing under dosing of the regions around upper respiratory cavities irradiated with photon beams: a Monte Carlo study. Med Phys. 2001; 28(8): 1711-1717. doi: 10.1118/1.1386780.
16-Naqvi S.A., Li X.A., Wadi-Ramahi S., Chu J.C., Ye S.J. Reducing loss in lateral charged-particle equilibrium due to air cavities present in x-ray irradiated media by using longitudinal magnetic fields. Med. Phys. 2001; 28 (4): 603-611. Doi: 10.1118/1.1357816.
17-Li X.A., Reiffel L., Chu J. and Naqvi S. Conformal photon-beam therapy with transverse magnetic fields: A Monte Carlo study. Med. Phys. 2001;28 (2):127-133.                                              doi: 10.1118/1.1344207.
18-Jette D. Magnetic fields with photon beams: Use of circular current loops. Med. Phys. 2001; 28 (10): 2129- 2138. doi: 10.1118/1.1406523.
19-Chu J.C., Reiffel L., Hsi W.C., Saxena V.A. Modulation of Radiotherapy Photon Beam Intensity Using Magnetic Field. Int J Cancer. 2001; 96: 131-137. Doi: 10.1002/ijc.10352.
20-Aubin J. St., Santos D.M., Steciw s., Fallone B. G. Effects of longitudinal magnetic fields on a simulated in – line 6 MV linac , Med. Phys., 2010; 37 (9): 4916-4923.
21-Kirkby CStanescu T, Fallone BG. Magnetic field effects on the energy deposition spectra of MV photon radiation. Phys Med Biol. 2009; 54(2): 243-57. doi: 10.1088/0031-9155/54/2/005.
22-Nettelbeck H., Takacs GJ., Rosenfeld AB. Effect of transverse magnetic fields on dose distribution and RBE of photon beams: comparing PENELOPE and EGS4 Monte Carlo codes. Phys. Med. Biol. 2008; 53(18): 5123–5137.
23-Esmaeeli A.D, Pouladian M, Monfared A.S., Mahdavi S.R., Moslemi D. Effect of uniform magnetic field on dose distribution in the breast radiotherapy. Int. J. Radiat. Res., 2014; 12 (2): 151-160.
24-Oborn B.M., Metcalfe P.E., Butson M.J. and Rosenfeld A.B. Monte Carlo characterization of skin doses in 6 MV transverse field MRI-linac systems: Effect of field size, surface orientation, magnetic field strength, and exit bolus. Med. Phys. 2010; 37 (10): 5208-5217. doi: 10.1118/1.3488980.
25-Bol GH. issoiny SH., Lagendijk JJW. and Raaymakers BW. Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator. Phys. Med. Biol. 2012; 57(5): 1375–1385. doi:10.1088/0031-9155/57/5/1375.
26-Yang Y.M., Geurts M., Smilowitz J.B., Sterpin E., Bednarz B.P. Monte Carlo simulations of patient dose perturbations in rotational-type radiotherapy due to a transverse magnetic field: A tomotherapy investigation. Med. Phys. 2015; 42(2): 715-725. doi: 10.1118/1.4905168.
27-Ghila A., Fallone B.G., Rathee  S. Influence of standard RF coil material on surface and build up dose from a 6 MV photon beam in magnetic field, Med. Phys., 2016; 43 (11): 5808-5816.
28-Chen X., Prior P., Chen G., Schuitz C. J., Li X.A., Technical Note: Dose effects of 1.5 T transverse magnetic field on tissue interfaces in MRI- guided radiotherapy, Med. Phys., 2016; 43 (8): 4797-4802.
29-Shih C.C. High energy electron radiotherapy in a magnetic field. Med. Phys., 1975; 2(1): 9-13. doi:10.1118/1.594157.
30-Paliwal BR., Wiley AL. Jr, Wessels BW., Choi MC. Magnetic field modification of electron-beam dose distributions in inhomogeneous media. Med Phys. 1978; 5(5):404-8.
31-Whitemire D.P. and Bernard D.L. Magnetic modification of the electron-dose distribution in tissue and lung phantoms. Med. Phys. 1978; 5(5): 409- 417.
32-Weinhous MS, Nath R, Schulz RJ. Enhancement of electron beam dose distributions by longitudinal magnetic fields: Monte Carlo simulations and magnetic field optimization. Med Phys. 1985; 12(5):598-603.
33-Bielajew A.F. The effect of strong longitudinal magnetic fields on dose deposition from electron and photon beams. Med. Phys. 1993; 20(4): 1171- 1179.
34-Nardi E. and Barnea G. Electron beam therapy with transverse magnetic fields. Med. Phys. 1999; 26 (6): 967- 973.
35-Lee MC, Ma CM. Monte Carlo characterization of clinical electron beams in transverse magnetic fields. Phys Med Biol. 2000 Oct; 45(10):2947-2967.
36-Becchetti, F. D.; Litzenberg, D. W.; Moran, J. M.; O’Donnell, T. W.; Roberts, D. A.; Fraass, B. A.; McShan, D. L.; Bielajew, A. F. (2001). "Magnetic confinement of radiotherapy beam-dose profiles." AIP Conference Proceedings 600(1): 44-46. <http://hdl.handle.net/2027.42/87615>. Doi: 10.1063/1.1435193.
37-Varzar S.M., Tultaev A.V., Chernyaev A.P. Control of the Distribution of the Electron Beam Dose in Radiation Therapy. Journal of Instruments and Experimental Techniques .  2002; 45(1): 103-106. DOI: 10.1023/a: 1014520814235.
38-Earl M.A. and Ma L. Depth dose enhancement of electron beams subject to external uniform longitudinal magnetic fields: A Monte Carlo study. Med. Phys. 2002; 29 (4): 484-491. doi: 10.1118/1.1461374.
39-Tahmasebi Birgani M.J., Bayatiani M.R, Seif  F, Zabihzadeh M, Shahbazian H. Use of Electron Beam under Effect of Magnetic Field to Optimize the Pattern of Prescribed Dose in Patients under Radiation Therapy. Jundi shapur Sci Med J. 2014; 13(1):77-88.
40-Tahmasebi-Birgani M.J. Bayatiani M.R.  Seif F. Zabihzadeh M.  Shahbazian H. Electron Beam Dose Distribution in the Presence of Non-Uniform Magnetic Field. Iran J Med Phys, 2013;10 (4), 2014; 11(1).
41-Tahmasebi Birgani M.J., Maskani R., Behrooz M.A., Zabihzade M., Shahbaziyan H., Fatahi asl J.,Chegeni N. Electronic Physician, 2017; 9 (4): 4171-4179.
42-Raaymakers BW, Raaijmakers AJ, Lagendijk JJ. Feasibility of MRI guided proton therapy: magnetic field dose effects. Phys. Med. Biol. 2008; 53(20):5615-5622. doi: 10.1088/0031-9155/53/20/003.
43-Sardari D., Hosseini-hamid M., and Saeidi P. In-vivo Proton Beam Shaping Using Static Magnetic Field for Cancer Therapy. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. Volume 25/1 of the series IFMBE Proceedings pp 949-951.
44-Wolf R. and Bortfeld T. An analytical solution to proton Bragg peak deflection in a magnetic field. Phys. Med. Biol. 2012; 57(17): 329–337. doi:10.1088/0031-9155/57/17/N329.
45-Oborn B.M., Dowdell S., Metcalfe P. E., Crozier S., Mohan R. and Keall P.J. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy. Med. Phys. 2015; 42(5): 2113- 2124. doi: 10.1118/1.4916661.
46-Schellhammer S.M and Hoffmann A.L. Prediction and compensation of magnetic beam deflection in MR- integrated proton therapy: a method optimized regarding accuracy, versatility and speed. Phys. Med. Biol. 2017; 62: 1549-1564
47-Fuchs H., Moser P., Groschl M., Georg D. Magnetic field effects on particle beams and their implications for dose calculation in MR guided particle therapy. 2017; [Article in press].
48-Strydom, W., Parker W. and Olivares M. Electron beams: physical and clinical aspects. Podgorsak EB (edn) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency (IAEA), Vienna (2005): 273-299. [book]. Available at: www-naweb.iaea.org.
49-Hogstrom K. R., Mills M.D. and Almond P.R. Electron beam dose calculations. Phys. Med. Biol. 1981; 26(3): 445-459. Available at: http://iopscience.iop.org/0031-9155/26/3/008.
50-Brahme A. Current algorithms for computed electron beam dose planning. Radiotherapy and Oncology. 1985; 3 (4): 347-362. DOI: http://dx.doi.org/10.1016/S0167-8140(85)80048-7
51-You S, Gou Ch, Wu Zh, Hou Q. A semi-analytical model for calculating the penetration depth of a High energy electron beam in a water phantom with a magnetic field. Physica Medica. 2015; 31(5): 463-467. DOI: http://dx.doi.org/10.1016/j.ejmp.2015.04.013.
52-Koehler A.M., Schneider R.J. and Sisterson J.M. flattening of proton dose distributions for large field radiotherapy. Medical Physics. 1977; 4(4): 297- 301. Doi: 10.1118/1.594317.
53-Riboldi M., Orecchia R., Baroni G. Real-time tumour tracking in particle therapy: technological developments and future perspectives. The lancet oncology. 2012; 13(9): 383-391. DOI: http://dx.doi.org/10.1016/S1470-2045(12)70243-7.
54-Vander Heide U. A., Houweling A. C., Groenendaal G., Beets-Tan R.G.H., Lambin Ph. Functional MRI for radiotherapy dose painting. Magn. Reson. Imaging. 2012; 30(9):1216-1223. Doi: 10.1016/j.mri.2012.04.010.