A Review of the Role of Activated Peroxisome Proliferator-Activated Receptors (PPARs) in Regulating Immune Responses and Their Targeting for the Treatment of Immune-Related Disease

Document Type : Review


1 Department of immunology, Faculty of Medical Sciences Semnan University, Semnan, Iran.

2 Department of Biochemistry, Faculty of Medical Sciences Tarbiat Modares University, Tehran, Iran.

3 Department of Immunology, Pasteur Institute, Tehran, Iran



Peroxisome proliferator-activated receptors (PPARs), belonging to the superfamily of nuclear receptors, serve as transcription factors upon ligand binding, either with endogenous or synthetic ligands, forming heterodimers with Retinoid X Receptors (RXRs). They initiate gene transcription to harmonize lipid and carbohydrate metabolism with cell proliferation and differentiation. Fatty acids and their derivatives are natural ligands. To date, three subtypes of PPARs have been identified: PPARα, PPARγ, and PPARβ/δ, each having drug agonists and antagonists developed. Furthermore, universal agonists have been designed to target combinations of these subgroups to mitigate drug side effects. PPARs control cellular energy homeostasis and are also expressed in immune cells, where they play a vital role in their differentiation and fate. Given the significant impact of PPAR activity on both innate and adaptive immune cell function and their involvement in immune-related diseases, e.g. antiphospholipid syndrome, hepatitis, myocarditis, neurodegenerative diseases, psoriasis, asthma, inflammatory bowel disease, renal inflammation and atherosclerosis, it is conceivable to treat some of these diseases by modulating these transcription factors. Furthermore, due to the significance role of PPARs in regulating tissue metabolism, several instances of them have been investigated.


Main Subjects

[1] Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990 Oct 18;347(6294):645-50. [10.1038/347645a0 ] [PMID]
[2] Auwerx J, Baulieu E, Beato M, Becker-Andre M, Burbach PH, Camerino G, Chambon P, Cooney A, Dejean A, Dreyer C, Evans RM. A unified nomenclature system for the nuclear receptor superfamily. Cell. 1999 Apr 16;97(2):161-3. [10.1016/s0092-8674(00)80726-6 ] [PMID]
[3] Lalwani ND, Kumudavalli Reddy M, Qureshi SA, Sirtori CR, Abiko Y, Reddy JK. Evaluation of selected hypolipidemic agents for the induction of peroxisomal enzymes and peroxisome proliferation in the rat liver. Human toxicology. 1983 Jan;2(1):27-48. [10.1177/096032718300200103 ] [PMID]
[4] Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein Science. 2018 Nov;27(11):1876-92. [10.1002/pro.3496 ] [PMID]
[5] Echeverría F, Ortiz M, Valenzuela R, Videla LA. Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2016 Nov 1;114:28-34. [10.1016/j.plefa.2016.10.001] [PMID]
[6] Ansquer JC. The PPAR system in diabetes. InLipoproteins in diabetes mellitus 2023 Jun 17 (pp. 145-167). Cham: Springer International Publishing. [Link]
[7] Mays SG, Okafor CD, Tuntland ML, Whitby RJ, Dharmarajan V, Stec J, Griffin PR, Ortlund EA. Structure and dynamics of the liver receptor homolog 1–PGC1α complex. Molecular pharmacology. 2017 Jul 1;92(1):1-1. [10.1124/mol.117.108514 ] [PMID]
[8] Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, Palmer CN. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacological reviews. 2006 Dec 1;58(4):726-41. [10.1124/pr.58.4.5 ] [PMID]
[9] Heidari Z, Chrisman IM, Nemetchek MD, Novick SJ, Blayo AL, Patton T, Mendes DE, Diaz P, Kamenecka TM, Griffin PR, Hughes TS. Definition of functionally and structurally distinct repressive states in the nuclear receptor PPARγ. Nature Communications. 2019 Dec 20;10(1):5825. [10.1038/s41467-019-13768-0 ] [PMID]
[10] Patsouris D, Reddy JK, Müller M, Kersten S. Peroxisome proliferator-activated receptor α mediates the effects of high-fat diet on hepatic gene expression. Endocrinology. 2006 Mar 1;147(3):1508-16. [10.1210/en.2005-1132 ] [PMID]
[11] Garcia-Roves P, Huss JM, Han DH, Hancock CR, Iglesias-Gutierrez E, Chen M, Holloszy JO. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proceedings of the National Academy of Sciences. 2007 Jun 19;104(25):10709-13. [10.1073/pnas. 0704024104] [PMID]
[12] Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications-a review. Nutrition journal. 2014 Dec;13:1-0. [10.1186/1475-2891-13-17] [PMID]
[13] Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nature Reviews Cardiology. 2021 Dec;18(12):809-23. [10.1038/s41569-021-00569-6 ] [PMID]
[14] Wagner KD, Wagner N. PPARs and myocardial infarction. International journal of molecular sciences. 2020 Dec 11; 21(24):9436. [10.3390/ijms21249436 ] [PMID]
[15] Marx N, Davies MJ, Grant PJ, Mathieu C, Petrie JR, Cosentino F, Buse JB. Guideline recommendations and the positioning of newer drugs in type 2 diabetes care. The lancet Diabetes & endocrinology. 2021 Jan 1;9(1):46-52. [10.1016/S2213-8587 (20)30343-0 ] [PMID]
[16] Sáez-Orellana F, Octave JN, Pierrot N. Alzheimer’s disease, a lipid story: involvement of peroxisome proliferator-activated receptor α. Cells. 2020 May 14;9(5):1215. [Link]
[17] Mantovani A, Byrne CD, Targher G. Efficacy of peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors for treatment of non-alcoholic fatty liver disease: a systematic review. The lancet Gastroenterology & hepatology. 2022 Apr 1. [10.1016/S2468-1253(21)00261-2] [PMID]
[18] Luan ZL, Zhang C, Ming WH, Huang YZ, Guan YF, Zhang XY. Nuclear receptors in renal health and disease. EBioMedicine. 2022 Feb 1;76. [10.1016/j.ebiom.2022.103855] [PMID]
[19] Liu Y, Wang J, Luo S, Zhan Y, Lu Q. The roles of PPARγ and its agonists in autoimmune diseases: A comprehensive review. Journal of Autoimmunity. 2020 Sep 1;113:102510. [10.1016/j. jaut.2020.102510 ] [PMID]
[20] Toobian D, Ghosh P, Katkar GD. Parsing the role of PPARs in macrophage processes. Frontiers in Immunology. 2021 Dec 22;12:783780. [10.3389/fimmu.2021.783780 ] [PMID]
[21] Wagner N, Wagner KD. PPAR beta/delta and the hallmarks of cancer. Cells. 2020 May 4;9(5):1133. [10.3390/cells9051133] [PMID]
[22] Reddy AT, Lakshmi SP, Reddy RC. PPAR𝛾 as a Novel Therapeutic Target in Lung Cancer. [Link]
[23] Daniel B, Nagy G, Czimmerer Z, Horvath A, Hammers DW, Cuaranta-Monroy I, Poliska S, Tzerpos P, Kolostyak Z, Hays TT, Patsalos A. The nuclear receptor PPARγ controls progressive macrophage polarization as a ligand-insensitive epigenomic ratchet of transcriptional memory. Immunity. 2018 Oct 16;49(4):615-26. [10.1016/j.immuni.2018.09.005] [PMID]
[24] Murray PJ. Macrophage polarization. Annual review of physiology. 2017 Feb 10;79:541-66. [10.1146/annurev-physiol-022516-034339 ] [PMID]
[25] Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Eagle AR, Vats D, Brombacher F, Ferrante AW, Chawla A. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature. 2007 Jun 28;447(7148):1116-20. [10. 1038/nature05894] [PMID]
[26] Varga T, Mounier R, Patsalos A, Gogolák P, Peloquin M, Horvath A, Pap A, Daniel B, Nagy G, Pintye E, Poliska S. Macrophage PPARγ, a lipid activated transcription factor controls the growth factor GDF3 and skeletal muscle regeneration. Immunity. 2016 Nov 15;45(5):1038-51. [10.1016/j.immuni.2016.10.016] [PMID]
Journal of Medical Sciences
January & February 2024. Vol 22. No 6
Hosseini M, et al. The Role of PPARs in Regulating Immune Response in Immune-Related Diseases. JSMJ. 2024; 22(6):650-677
[27] Heming M, Gran S, Jauch SL, Fischer-Riepe L, Russo A, Klotz L, Hermann S, Schäfers M, Roth J, Barczyk-Kahlert K. Peroxisome proliferator-activated receptor-γ modulates the response of macrophages to lipopolysaccharide and glucocorticoids. Frontiers in immunology. 2018 May 8;9:893. [10.3389/ fimmu.2018.00893] [PMID]
[28] Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans RM, Barak Y. STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity. 2010 Nov 24;33(5):699-712. [10.1016/j.immuni.2010.11.009] [PMID]
[29] De Paoli F, Staels B, Chinetti-Gbaguidi G. Macrophage phenotypes and their modulation in atherosclerosis. Circulation Journal. 2014 Jul 25;78(8):1775-81. [10.1253/ circj.cj-14-0621] [PMID]
[30] Kotla S, Rao GN. Reactive oxygen species (ROS) mediate p300-dependent STAT1 protein interaction with peroxisome proliferator-activated receptor (PPAR)-γ in CD36 protein expression and foam cell formation. Journal of Biological Chemistry. 2015 Dec 18;290(51):30306-20. [10.1074/jbc. M115.686865] [PMID]
[31] Kotla S, Singh NK, Rao GN. ROS via BTK-p300-STAT1-PPARγ signaling activation mediates cholesterol crystals-induced CD36 expression and foam cell formation. Redox biology. 2017 Apr 1;11:350-64. [10.1016/j.redox.2016.12.005] [PMID]
[32] Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, Milstone DS, Mortensen RM, Spiegelman BM, Freeman MW. The role of PPAR-γ in macrophage differentiation and cholesterol uptake. Nature medicine. 2001 Jan;7(1):41-7. [10.1038/83328] [PMID]
[33] Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM. A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Molecular cell. 2001 Jan 1;7(1):161-71. [10.1016/s1097-2765(01)00164-2] [PMID]
[34] Szatmari I, Rajnavolgyi E, Nagy L. PPARγ, a lipid‐activated transcription factor as a regulator of dendritic cell function. Annals of the New York Academy of Sciences. 2006 Nov; 1088(1):207-18. [10.1196/annals.1366.013] [PMID]
[35] Klotz L, Dani I, Edenhofer F, Nolden L, Evert B, Paul B, Kolanus W, Klockgether T, Knolle P, Diehl L. Peroxisome proliferator-activated receptor γ control of dendritic cell function contributes to development of CD4+ T cell anergy. The Journal of Immunology. 2007 Feb 15;178(4):2122-31. [10.4049/ jimmunol.178.4.2122] [PMID]
[36] Appel S, Mirakaj V, Bringmann A, Weck MM, Grünebach F, Brossart P. PPAR-γ agonists inhibit toll-like receptor-mediated activation of dendritic cells via the MAP kinase and NF-κB pathways. Blood. 2005 Dec 1;106(12):3888-94. [10.1182/ blood-2004-12-4709] [PMID]
[37] Khare A, Chakraborty K, Raundhal M, Ray P, Ray A. Cutting edge: dual function of PPARγ in CD11c+ cells ensures immune tolerance in the airways. The Journal of Immunology. 2015 Jul 15;195(2):431-5. [10.4049/jimmunol.1500474] [PMID]
[38] Bene K, Varga Z, Petrov VO, Boyko N, Rajnavolgyi E. Gut microbiota species can provoke both inflammatory and tolerogenic immune responses in human dendritic cells
mediated by retinoic acid receptor alpha ligation. Frontiers in Immunology. 2017 Apr 18;8:427. [10.3389/fimmu.2017. 00427] [PMID]
[39] Klotz L, Burgdorf S, Dani I, Saijo K, Flossdorf J, Hucke S, Alferink J, Novak N, Beyer M, Mayer G, Langhans B. The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell–intrinsic fashion and suppresses CNS autoimmunity. Journal of Experimental Medicine. 2009 Sep 28;206(10):2079-89. [10.1084/jem.20082771] [PMID]
[40] Zhang MA, Rego D, Moshkova M, Kebir H, Chruscinski A, Nguyen H, Akkermann R, Stanczyk FZ, Prat A, Steinman L, Dunn SE. Peroxisome proliferator-activated receptor (PPAR) α and-γ regulate IFNγ and IL-17A production by human T cells in a sex-specific way. Proceedings of the National Academy of Sciences. 2012 Jun 12;109(24):9505-10. [10.1073/pnas.1118458109] [PMID]
[41] Park HJ, Park HS, Lee JU, Bothwell AL, Choi JM. Gender-specific differences in PPARγ regulation of follicular helper T cell responses with estrogen. Scientific reports. 2016 Jun 23;6(1): 28495. [10.1038/srep28495] [PMID]
[42] Angela M, Endo Y, Asou HK, Yamamoto T, Tumes DJ, Tokuyama H, Yokote K, Nakayama T. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARγ directs early activation of T cells. Nature communications. 2016 Nov 30; 7(1):13683. [10.1038/ncomms13683] [PMID]
[43] Meng F, Hao P, Du H. Regulatory T cells differentiation in visceral adipose tissues contributes to insulin resistance by regulating JAZF‐1/PPAR‐γ pathway. Journal of Cellular and Molecular Medicine. 2023 Feb;27(4):553-62. [10.1111/jcmm. 17680] [PMID]
[44] Field CS, Baixauli F, Kyle RL, Puleston DJ, Cameron AM, Sanin DE, Hippen KL, Loschi M, Thangavelu G, Corrado M, Edwards-Hicks J. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function. Cell metabolism. 2020 Feb 4;31(2):422-37. [10.1016/j.cmet.2019. 11.021] [PMID]
[45] Huang X, Ren L, Ye P, Cheng C, Wu J, Wang S, Sun Y, Liu Z, Xie A, Xia J. Peroxisome proliferator-activated receptor γ deficiency in T cells accelerates chronic rejection by influencing the differentiation of CD4+ T cells and alternatively activated macrophages. Plos one. 2014 Nov 10;9(11):e112953. [10. 1371/journal.pone.0112953] [PMID]
[46] Park HJ, Kim DH, Choi JY, Kim WJ, Kim JY, Senejani AG, Hwang SS, Kim LK, Tobiasova Z, Lee GR, Craft J. PPARγ negatively regulates T cell activation to prevent follicular helper T cells and germinal center formation. PloS one. 2014 Jun 12;9(6): e99127. [10.1371/journal.pone.0099127] [PMID]
[47] Setoguchi K, Misaki Y, Terauchi Y, Yamauchi T, Kawahata K, Kadowaki T, Yamamoto K. Peroxisome proliferator-activated receptor-γ haploinsufficiency enhances B cell proliferative responses and exacerbates experimentally induced arthritis. The Journal of clinical investigation. 2001 Dec 1;108(11):1667-75. [10.1172/JCI13202] [PMID]
[48] Su J, Wang K, Zhou X, Wang Y, Xu J, Tao L, Zeng X, Chen N, Bai X, Li X. B‐cell‐specific‐peroxisome proliferator‐activated receptor γ deficiency augments contact hypersensitivity with impaired regulatory B cells. Immunology. 2019 Mar; 156(3):282-96. [Link]
Hosseini M, et al. The Role of PPARs in Regulating Immune Response in Immune-Related Diseases. JSMJ. 2024; 22(6):650-677
Journal of Medical Sciences
January & February 2024. Vol 22. No 6
[49] Takano K, Saeki C, Oikawa T, Hidaka A, Mizuno Y, Ishida J, Takakura K, Nakano M, Torisu Y, Amano K, Ishikawa T. IgM response is a prognostic biomarker of primary biliary cholangitis treated with ursodeoxycholic acid and bezafibrate. Journal of Gastroenterology and Hepatology. 2020 Apr;35(4): 663-72. [10.1111/jgh.14900] [PMID]
[50] Crisafulli C, Cuzzocrea S. The role of endogenous and exogenous ligands for the peroxisome proliferator-activated receptor alpha (PPAR-α) in the regulation of inflammation in macrophages. Shock. 2009 Jul 1;32(1):62-73. [10.1097/shk. 0b013e31818bbad6] [PMID]
[51] Penas F, Mirkin GA, Vera M, Cevey Á, González CD, Gómez MI, Sales ME, Goren NB. Treatment in vitro with PPARα and PPARγ ligands drives M1-to-M2 polarization of macrophages from T. cruzi-infected mice. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2015 May 1;1852(5):893-904. [10.1016/j.bbadis.2014.12.019] [PMID]
[52] Kim YS, Lee HM, Kim JK, Yang CS, Kim TS, Jung M, Jin HS, Kim S, Jang J, Oh GT, Kim JM. PPAR-α activation mediates innate host defense through induction of TFEB and lipid catabolism. The Journal of Immunology. 2017 Apr 15;198(8):3283-95. [10.4049/jimmunol.1601920] [PMID]
[53] Dunn SE, Ousman SS, Sobel RA, Zuniga L, Baranzini SE, Youssef S, Crowell A, Loh J, Oksenberg J, Steinman L. Peroxisome proliferator–activated receptor (PPAR) α expression in T cells mediates gender differences in development of T cell–mediated autoimmunity. The Journal of experimental medicine. 2007 Feb 19;204(2):321-30. [10.1084/jem. 20061839] [PMID]
[54] Zhang MA, Ahn JJ, Zhao FL, Selvanantham T, Mallevaey T, Stock N, Correa L, Clark R, Spaner D, Dunn SE. Antagonizing peroxisome proliferator–activated receptor α activity selectively enhances TH1 immunity in male mice. The Journal of Immunology. 2015 Dec 1;195(11):5189-202. [10.4049/ jimmunol.1500449] [PMID]
[55] Dubrac S, Elentner A, Schoonjans K, Auwerx J, Schmuth M. Lack of IL‐2 in PPAR‐α‐deficient mice triggers allergic contact dermatitis by affecting regulatory T cells. European journal of immunology. 2011 Jul;41(7):1980-91. [10.1002/eji. 201041357] [PMID]
[56] Lei J, Hasegawa H, Matsumoto T, Yasukawa M. Peroxisome proliferator-activated receptor α and γ agonists together with TGF-β convert human CD4+ CD25− T cells into functional Foxp3+ regulatory T cells. The Journal of Immunology. 2010 Dec 15;185(12):7186-98. [10.4049/jimmunol.1001437] [PMID]
[57] Welch JS, Ricote M, Akiyama TE, Gonzalez FJ, Glass CK. PPARγ and PPARδ negatively regulate specific subsets of lipopolysaccharide and IFN-γ target genes in macrophages. Proceedings of the National Academy of Sciences. 2003 May 27;100(11):6712-7. [10.1073/pnas.1031789100 ] [PMID]
[58] Lee CH, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM. Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science. 2003 Oct 17;302(5644):453-7. [10.1126/science.1087344] [PMID]
[59] Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B, Lee CH. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell metabolism. 2008 Jun 4;7(6):485-95. [10.1016/ j.cmet.2008.04.002] [PMID]
[60] Adhikary T, Wortmann A, Schumann T, Finkernagel F, Lieber S, Roth K, Toth PM, Diederich WE, Nist A, Stiewe T, Kleinesudeik L. The transcriptional PPARβ/δ network in human macrophages defines a unique agonist-induced activation state. Nucleic acids research. 2015 May 26;43(10):5033-51. [10.1093/nar/gkv331] [PMID]
[61] Yao PL, Morales JL, Gonzalez FJ, Peters JM. Peroxisome proliferator‐activated receptor‐β/δ modulates mast cell phenotype. Immunology. 2017 Apr;150(4):456-67. [10.1111/ imm.12699] [PMID]
[62] Zhao FL, Ahn JJ, Chen EL, Yi TJ, Stickle NH, Spaner D, Zúñiga-Pflücker JC, Dunn SE. Peroxisome proliferator-activated receptor–δ supports the metabolic requirements of cell growth in TCRβ-selected thymocytes and peripheral CD4+ T cells. The Journal of Immunology. 2018 Nov 1;201(9):2664-82. [10.4049/jimmunol.1800374 ] [PMID]
[63] Mothe-Satney I, Murdaca J, Sibille B, Rousseau AS, Squillace R, Le Menn G, Rekima A, Larbret F, Pelé J, Verhasselt V, Grimaldi PA. A role for Peroxisome Proliferator-Activated Receptor Beta in T cell development. Scientific reports. 2016 Sep 29;6(1): 34317. [10.1038/srep34317 ] [PMID]
[64] Kanakasabai S, Chearwae W, Walline CC, Iams W, Adams SM, Bright JJ. Peroxisome proliferator‐activated receptor δ agonists inhibit T helper type 1 (Th1) and Th17 responses in experimental allergic encephalomyelitis. Immunology. 2010 Aug;130(4):572-88. [10.1111/j.1365-2567.2010. 03261.x] [PMID]
[65] Kanakasabai S, Walline CC, Chakraborty S, Bright JJ. PPARδ deficient mice develop elevated Th1/Th17 responses and prolonged experimental autoimmune encephalomyelitis. Brain Research. 2011 Feb 28;1376:101-12. [10.1016/j.brainres. 2010.12.059 ] [PMID]
[66] Dunn SE, Bhat R, Straus DS, Sobel RA, Axtell R, Johnson A, Nguyen K, Mukundan L, Moshkova M, Dugas JC, Chawla A. Peroxisome proliferator–activated receptor δ limits the expansion of pathogenic Th cells during central nervous system autoimmunity. Journal of Experimental Medicine. 2010 Aug 2;207(8):1599-608. [10.1084/jem.20091663 ] [PMID]
[67] Drohomyrecky PC, Doroshenko ER, Akkermann R, Moshkova M, Yi TJ, Zhao FL, Ahn JJ, McGaha TL, Pahan K, Dunn SE. Peroxisome Proliferator–Activated Receptor-δ Acts within Peripheral Myeloid Cells to Limit Th Cell Priming during Experimental Autoimmune Encephalomyelitis. The Journal of Immunology. 2019 Nov 15;203(10):2588-601. [10.4049/ jimmunol.1801200 ] [PMID]
[68] Toffoli B, Gilardi F, Winkler C, Soderberg M, Kowalczuk L, Arsenijevic Y, Bamberg K, Bonny O, Desvergne B. Nephropathy in Pparg-null mice highlights PPARγ systemic activities in metabolism and in the immune system. PloS one. 2017 Feb 9;12(2):e0171474. [10.1371/journal.pone.0171474 ] [PMID]
[69] Liu YH, Tsai YS, Lin SC, Liao NS, Jan MS, Liang CT, Hsu SW, Chen WC, Sung JM, Maeda N, Tsai PJ. Quantitative PPARγ expression affects the balance between tolerance and immunity. Scientific reports. 2016 May 25;6(1):26646. [10.1038/ srep26646] [PMID]
[70] Rőszer T, Menéndez-Gutiérrez MP, Lefterova MI, Alameda D, Núñez V, Lazar MA, Fischer T, Ricote M. Autoimmune kidney disease and impaired engulfment of apoptotic cells in mice with macrophage peroxisome proliferator-activated receptor
Journal of Medical Sciences
January & February 2024. Vol 22. No 6
Hosseini M, et al. The Role of PPARs in Regulating Immune Response in Immune-Related Diseases. JSMJ. 2024; 22(6):650-677
γ or retinoid X receptor α deficiency. The Journal of Immunology. 2011 Jan 1;186(1):621-31. [10.4049/jimmunol. 1002230] [PMID]
[71] Luo W, Xu Q, Wang Q, Wu H, Hua J. Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease. Scientific reports. 2017 Mar 16;7(1):44612. [10.1038/srep44612] [PMID]
[72] Lian M, Luo W, Sui Y, Li Z, Hua J. Dietary n-3 PUFA protects mice from Con A induced liver injury by modulating regulatory T cells and PPAR-γ expression. PLoS One. 2015 Jul 15;10(7): e0132741. [10.1371/journal.pone.0132741] [PMID]
[73] Lian M, Luo W, Sui Y, Li Z, Hua J. Dietary n-3 PUFA protects mice from Con A induced liver injury by modulating regulatory T cells and PPAR-γ expression. PLoS One. 2015 Jul 15;10(7): e0132741. [10.1371/journal.pone.0132741 ] [PMID]
[74] Chen K, Li J, Wang J, Xia Y, Dai W, Wang F, Shen M, Cheng P, Zhang Y, Wang C, Yang J. 15-Deoxy-γ12, 14-prostaglandin J2 reduces liver impairment in a model of ConA-induced acute hepatic inflammation by activation of PPARγ and reduction in NF-κB activity. PPAR research. 2014 Oct;2014. [10.1155/ 2014/864839 ] [PMID]
[75] Dai M, Wu L, He Z, Zhang S, Chen C, Xu X, Wang P, Gruzdev A, Zeldin DC, Wang DW. Epoxyeicosatrienoic acids regulate macrophage polarization and prevent LPS‐induced cardiac dysfunction. Journal of cellular physiology. 2015 Sep;230(9): 2108-19. [10.1002/jcp.24939 ] [PMID]
[76] Chen T, Tibbitt CA, Feng X, Stark JM, Rohrbeck L, Rausch L, Sedimbi SK, Karlsson MC, Lambrecht BN, Karlsson Hedestam GB, Hendriks RW. PPAR-γ promotes type 2 immune responses in allergy and nematode infection. Science immunology. 2017 Mar 10;2(9):eaal5196. [10.1126/sciimmunol.aal5196] [PMID]
[77] Micossé C, von Meyenn L, Steck O, Kipfer E, Adam C, Simillion C, Seyed Jafari SM, Olah P, Yawlkar N, Simon D, Borradori L. Human “TH9” cells are a subpopulation of PPAR-γ+ TH2 cells. Science immunology. 2019 Jan 18;4(31):eaat5943. [10.1126/ sciimmunol.aal5196] [PMID]
[78] Nobs SP, Natali S, Pohlmeier L, Okreglicka K, Schneider C, Kurrer M, Sallusto F, Kopf M. PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation. Journal of experimental medicine. 2017 Oct 2;214(10):3015-35. [10.1084/jem.20162069] [PMID]
[79] Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MV, Leak RK. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Progress in neurobiology. 2018 Apr 1;163:27-58. [10.1016/j.pneurobio.2017.10.002] [PMID]
[80] Song J, Choi SM, Kim BC. Adiponectin regulates the polarization and function of microglia via PPAR-γ signaling under amyloid β toxicity. Frontiers in cellular neuroscience. 2017 Mar 7;11:64. [10.3389/fncel.2017.00064] [PMID]
[81] Hucke S, Floßdorf J, Grützke B, Dunay IR, Frenzel K, Jungverdorben J, Linnartz B, Mack M, Peitz M, Brüstle O, Kurts C. Licensing of myeloid cells promotes central nervous system autoimmunity and is controlled by peroxisome proliferator-activated receptor γ. Brain. 2012 May 1;135(5):1586-605. [10.1093/brain/aws058] [PMID]
[82] Romanowska M, Niteshwaran S, Palmer C, Foerster J. Activation of PPAR delta causes a psoriasis-like skin disease in
vivo. British Journal of Dermatology. 2008 Dec;159(6):1398. [10.1371/journal.pone.0009701] [PMID]
[83] Hegazy RA, Hay RM, Shaker O, Sayed SS, Halim DA. Psoriasis and metabolic syndrome: Is peroxisome proliferator-activated receptor-γ part of the missing link?. European Journal of Dermatology. 2012 Sep 1;22(5):622-8. [10.1684/ejd.2012. 1789] [PMID]
[84] Lin X, Meng X, Song Z, Lin J. Peroxisome proliferator-activator receptor γ and psoriasis, molecular and cellular biochemistry. Molecular and Cellular Biochemistry. 2022 Jul;477(7):1905-20. [10.1007/s11010-022-04417-0] [PMID]
[85] Lima ED, Lima MM, Marques CD, Duarte AL, Pita ID, Pita MG. Peroxisome proliferator-activated receptor agonists (PPARs): a promising prospect in the treatment of psoriasis and psoriatic arthritis. Anais Brasileiros de Dermatologia. 2013 Nov;88: 1029-35. [10.1590/abd1806-4841.20132653] [PMID]
[86] Bhagavathula N, Nerusu KC, Reddy M, Ellis CN, Chittiboyina A, Avery M, Pershadsingh HA, Kurtz TW, Varani J. BP-1107 [{2-[4-(2, 4-dioxo-thiazolidin-5-ylmethyl)-phenoxy]-ethyl}-methyl-amide]: a novel synthetic thiazolidinedione that inhibits epidermal hyperplasia in psoriatic skin-severe-combined immunodeficient mouse transplants after topical application. Journal of Pharmacology and Experimental Therapeutics. 2005 Dec 1;315(3):996-1004. [Link]
[87] Bhagavathula N, Nerusu KC, Lal A, Ellis CN, Chittiboyina A, Avery MA, Ho CI, Benson SC, Pershadsingh HA, Kurtz TW, Varani J. Rosiglitazone inhibits proliferation, motility, and matrix metalloproteinase production in keratinocytes. Journal of investigative dermatology. 2004 Jan 1;122(1):130-9. [10. 1046/j.0022-202X.2003.22111.x] [PMID]
[88] Kim SR, Lee KS, Park HS, Park SJ, Min KH, Jin SM, Lee YC. Involvement of IL-10 in peroxisome proliferator-activated receptor γ-mediated anti-inflammatory response in asthma. Molecular pharmacology. 2005 Dec 1;68(6):1568-75. [10. 1124/mol.105.017160] [PMID]
[89] Lakshmi SP, Reddy AT, Zhang Y, Sciurba FC, Mallampalli RK, Duncan SR, Reddy RC. Down-regulated peroxisome proliferator-activated receptor γ (PPARγ) in lung epithelial cells promotes a PPARγ agonist-reversible proinflammatory phenotype in chronic obstructive pulmonary disease (COPD). Journal of Biological Chemistry. 2014 Mar 7;289(10):6383-93. [10.1074/jbc.M113.536805] [PMID]
[90] Guri AJ, Mohapatra SK, Horne WT, Hontecillas R, Bassaganya-Riera J. The role of T cell PPAR γ in mice with experimental inflammatory bowel disease. BMC gastroenterology. 2010 Dec;10:1-3. [10.1186/1471-230X-10-60] [PMID]
[91] Wang K, Li YF, Lv Q, Li XM, Dai Y, Wei ZF. Bergenin, acting as an agonist of PPARγ, ameliorates experimental colitis in mice through improving expression of SIRT1, and therefore inhibiting NF-κB-mediated macrophage activation. Frontiers in pharmacology. 2018 Jan 12;8:324875. [10.3389/fphar. 2017.00981] [PMID]
[92] Hoffmann PR. An emerging picture of the biological roles of selenoprotein K. InSelenium: its molecular biology and role in human health 2011 Oct 11 (pp. 335-344). New York, NY: Springer New York. [Link]
[93] Song X, Qiao L, Yan S, Chen Y, Dou X, Xu C. Preparation, characterization, and in vivo evaluation of anti-inflammatory
Hosseini M, et al. The Role of PPARs in Regulating Immune Response in Immune-Related Diseases. JSMJ. 2024; 22(6):650-677
Journal of Medical Sciences
January & February 2024. Vol 22. No 6
activities of selenium nanoparticles synthesized by Kluyveromyces lactis GG799. Food & Function. 2021;12(14): 6403-15. [10.1039/d1fo01019k] [PMID]
[94] Gao X, Zhang Z, Li Y, Hu X, Shen P, Fu Y, Cao Y, Zhang N. Selenium deficiency deteriorate the inflammation of S. aureus infection via regulating NF-κB and PPAR-γ in mammary gland of mice. Biological Trace Element Research. 2016 Jul;172:140-7. [10.1007/s12011-015-0563-5] [PMID]
[95] Stienstra R, Mandard S, Patsouris D, Maass C, Kersten S, Muller M. Peroxisome proliferator-activated receptor α protects against obesity-induced hepatic inflammation. Endocrinology. 2007 Jun 1;148(6):2753-63. [10.1210/en.2007-0014] [PMID]
[96] Mansouri RM, Baugé E, Staels B, Gervois P. Systemic and distal repercussions of liver-specific peroxisome proliferator-activated receptor-α control of the acute-phase response. Endocrinology. 2008 Jun 1;149(6):3215-23. [10.1210/en.2007-1339] [PMID]
[97] Régnier M, Polizzi A, Smati S, Lukowicz C, Fougerat A, Lippi Y, Fouché E, Lasserre F, Naylies C, Bétoulières C, Barquissau V. Hepatocyte-specific deletion of Pparα promotes NAFLD in the context of obesity. Scientific reports. 2020 Apr 16;10(1):6489. [10.1038/s41598-020-63579-3] [PMID]
[98] Mahmoudi A, Jamialahmadi T, Johnston TP, Sahebkar A. Impact of fenofibrate on NAFLD/NASH: A genetic perspective. Drug Discovery Today. 2022;27(8):2363-72. Mahmoudi A, Jamialahmadi T, Johnston TP, Sahebkar A. Impact of fenofibrate on NAFLD/NASH: A genetic perspective. Drug discovery today. 2022 Aug 1;27(8):2363-72. [10.1016/j.drudis. 2022.05.007 ] [PMID]
[99] Mahmoudi A, Moallem SA, Johnston TP, Sahebkar A. Liver protective effect of fenofibrate in NASH/NAFLD animal models. PPAR research. 2022 Jun 17;2022. [10.1155/2022/ 5805398 ] [PMID
[100] El-Haggar SM, Mostafa TM. Comparative clinical study between the effect of fenofibrate alone and its combination with pentoxifylline on biochemical parameters and liver stiffness in patients with non-alcoholic fatty liver disease. Hepatology international. 2015 Jul;9:471-9. [10.1007/s12072-015-9633-1] [PMID]
[101] Li S, Mariappan N, Megyesi J, Shank B, Kannan K, Theus S, Price PM, Duffield JS, Portilla D. Proximal tubule PPARα attenuates renal fibrosis and inflammation caused by unilateral ureteral obstruction. American Journal of Physiology-Renal Physiology. 2013 Sep 1;305(5):F618-27. [10.1152/ajprenal.00309.2013] [PMID]
[102] Iwaki T, Bennion BG, Stenson EK, Lynn JC, Otinga C, Djukovic D, Raftery D, Fei L, Wong HR, Liles WC, Standage SW. PPAR α contributes to protection against metabolic and inflammatory derangements associated with acute kidney injury in experimental sepsis. Physiological reports. 2019 May;7(10):e14078. [10.14814/phy2.14078] [PMID]
[103] Wang J, Song J, Li Y, Shao J, Xie Z, Sun K. Down-regulation of LncRNA CRNDE aggravates kidney injury via increasing MiR-181a-5p in sepsis. International immunopharmacology. 2020 Feb 1;79:105933. [10.1016/j. intimp.2019.105933] [PMID]
[104] Wang M, Luo W, Yu T, Liang S, Sun J, Zhang Y, Han X, Long X, Liang G, Li G. Corynoline protects ang II-induced
hypertensive heart failure by increasing PPARα and Inhibiting NF-κB pathway. Biomedicine & Pharmacotherapy. 2022 Jun 1;150:113075. [10.1016/j.biopha.2022.113075] [PMID]
[105] Yue TL, Bao W, Jucker BM, Gu JL, Romanic AM, Brown PJ, Cui J, Thudium DT, Boyce R, Burns-Kurtis CL, Mirabile RC. Activation of peroxisome proliferator–activated receptor-α protects the heart from ischemia/reperfusion injury. Circulation. 2003 Nov 11;108(19):2393-9. [10.1161/01.CIR. 0000093187.42015.6C] [PMID]
[106] Takano H, Nagai T, Asakawa M, Toyozaki T, Oka T, Komuro I, Saito T, Masuda Y. Peroxisome proliferator–activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-α expression in neonatal rat cardiac myocytes. Circulation Research. 2000 Sep 29;87(7):596-602. [10.1161/01.res.87.7.596] [PMID]
[107] Li AC, Binder CJ, Gutierrez A, Brown KK, Plotkin CR, Pattison JW, Valledor AF, Davis RA, Willson TM, Witztum JL, Palinski W. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. The Journal of clinical investigation. 2004 Dec 1;114(11):1564-76. [10.1172/JCI18730] [PMID]
[108] Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nature medicine. 2001 Jan;7(1):53-8. [10.1038/83348] [PMID]
[109] Daub K, Langer H, Seizer P, Stellos K, May AE, Goyal P, Bigalke B, Schönberger T, Geisler T, Siegel‐Axel D, J. Oostendorp RA. Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. The FASEB journal. 2006 Dec;20(14):2559-61. [10.1096/fj.06-6265fje] [PMID]
[110] Kotla S, Rao GN. Reactive oxygen species (ROS) mediate p300-dependent STAT1 protein interaction with peroxisome proliferator-activated receptor (PPAR)-γ in CD36 protein expression and foam cell formation. Journal of Biological Chemistry. 2015 Dec 18;290(51):30306-20. [10.1074/jbc. M115.686865] [PMID]
[111] Basso PJ, Sales-Campos H, Nardini V, Duarte-Silva M, Bonfá G, Rodrigues CC, Ghirotto B, Chica JE, Cardoso CR. Peroxisome proliferator-activated receptor alpha mediates the beneficial effects of atorvastatin in experimental colitis. Frontiers in Immunology. 2021 Aug 9;12:618365. [10.3389/ fimmu.2021.618365] [PMID]
[112] Cuzzocrea S, Di Paola R, Mazzon E, Genovese T, Muia C, Centorrino T, Caputi AP. Role of endogenous and exogenous ligands for the peroxisome proliferators activated receptors alpha (PPAR-α) in the development of inflammatory bowel disease in mice. Laboratory investigation. 2004 Dec;84(12): 1643-54. [10.1038/labinvest.3700185 ] [PMID]
[113] Azuma YT, Nishiyama K, Matsuo Y, Kuwamura M, Morioka A, Nakajima H, Takeuchi T. PPARα contributes to colonic protection in mice with DSS-induced colitis. International immunopharmacology. 2010 Oct 1;10(10):1261-7. [10.1016/j.intimp.2010.07.007] [PMID]
[114] Cuzzocrea S, Bruscoli S, Mazzon E, Crisafulli C, Donato V, Di Paola R, Velardi E, Esposito E, Nocentini G, Riccardi C. Peroxisome proliferator-activated receptor-α contributes to
Journal of Medical Sciences
January & February 2024. Vol 22. No 6
Hosseini M, et al. The Role of PPARs in Regulating Immune Response in Immune-Related Diseases. JSMJ. 2024; 22(6):650-677
the anti-inflammatory activity of glucocorticoids. Molecular Pharmacology. 2008 Feb 1;73(2):323-37. [10.1124/mol. 107.041475] [PMID]
[115] Riccardi L, Mazzon E, Bruscoli S, Esposito E, Crisafulli C, Di Paola R, Caminiti R, Riccardi C, Cuzzocrea S. Peroxisome proliferator-activated receptor-α modulates the anti-inflammatory effect of glucocorticoids in a model of inflammatory bowel disease in mice. Shock. 2009 Mar 1;31(3):308-16. [10.1097/SHK.0b013e31818339e7 ] [PMID]
[116] Shan W, Palkar PS, Murray IA, McDevitt EI, Kennett MJ, Kang BH, Isom HC, Perdew GH, Gonzalez FJ, Peters JM. Ligand activation of peroxisome proliferator–activated receptor β/δ (PPARβ/δ) attenuates carbon tetrachloride hepatotoxicity by downregulating proinflammatory gene expression. Toxicological sciences. 2008 Oct 1;105(2):418-28. [10.1093/ toxsci/kfn142] [PMID]
[117] Kino T, Rice KC, Chrousos GP. The PPARδ agonist GW501516 suppresses interleukin‐6‐mediated hepatocyte acute phase reaction via STAT3 inhibition. European journal of clinical investigation. 2007 May;37(5):425-33. [10.1093/ toxsci/kfn142] [PMID]
[118] Kino T, Rice KC, Chrousos GP. The PPARδ agonist GW501516 suppresses interleukin‐6‐mediated hepatocyte acute phase reaction via STAT3 inhibition. European journal of clinical investigation. 2007 May;37(5):425-33. [10.1111/j.1365-2362.2007.01796.x] [PMID]
[119] Lee MY, Choi R, Kim HM, Cho EJ, Kim BH, Choi YS, Naowaboot J, Lee EY, Yang YC, Shin JY, Shin YG. Peroxisome proliferator-activated receptor δ agonist attenuates hepatic steatosis by anti-inflammatory mechanism. Experimental & molecular medicine. 2012 Oct;44(10):578-85. [10.3858/emm. 2012.44.10.066 ] [PMID]
[120] Yang X, Kume S, Tanaka Y, Isshiki K, Araki SI, Chin-Kanasaki M, Sugimoto T, Koya D, Haneda M, Sugaya T, Li D. GW501516, a PPARδ agonist, ameliorates tubulointerstitial inflammation in proteinuric kidney disease via inhibition of TAK1-NFκB pathway in mice. PloS one. 2011 Sep 22;6(9): e25271. [10.1371/journal.pone.0025271] [PMID]
[121] Odegaard JI, Ricardo-Gonzalez RR, Eagle AR, Vats D, Morel CR, Goforth MH, Subramanian V, Mukundan L, Ferrante AW, Chawla A. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell metabolism. 2008 Jun 4;7(6):496-507. [10.1016/j.cmet. 2008.04.003 ] [PMID]
[122] Mukundan L, Odegaard JI, Morel CR, Heredia JE, Mwangi JW, Ricardo-Gonzalez RR, Goh YS, Eagle AR, Dunn SE, Awakuni JU, Nguyen KD. PPAR-δ senses and orchestrates clearance of apoptotic cells to promote tolerance. Nature medicine. 2009 Nov;15(11):1266-72. [10.1038/nm.2048] [PMID]
[123] Romero M, Toral M, Robles-Vera I, Sánchez M, Jiménez R, O’Valle F, Rodriguez-Nogales A, Pérez-Vizcaino F, Gálvez J, Duarte J. Activation of peroxisome proliferator activator receptor β/δ improves endothelial dysfunction and protects kidney in murine lupus. Hypertension. 2017 Apr;69(4):641-50. [10.1161/HYPERTENSIONAHA.116.08655] [PMID]
[124] Fan Y, Wang Y, Tang Z, Zhang H, Qin X, Zhu Y, Guan Y, Wang X, Staels B, Chien S, Wang N. Suppression of pro-inflammatory adhesion molecules by PPAR-δ in human
vascular endothelial cells. Arteriosclerosis, thrombosis, and vascular biology. 2008 Feb 1;28(2):315-21 .[ 10.1161/ ATVBAHA.107.149815] [PMID]
[125] Bojic LA, Sawyez CG, Telford DE, Edwards JY, Hegele RA, Huff MW. Activation of peroxisome proliferator-activated receptor δ inhibits human macrophage foam cell formation and the inflammatory response induced by very low-density lipoprotein. Arteriosclerosis, thrombosis, and vascular biology. 2012 Dec;32(12):2919-28. [10.1161/ATVBAHA.112.255208] [PMID]
[126] Shi H, Mao X, Zhong Y, Liu Y, Zhao X, Yu K, Zhu R, Wei Y, Zhu J, Sun H, Mao Y. Lanatoside C promotes foam cell formation and atherosclerosis. Scientific Reports. 2016 Jan 29;6(1):20154. [10.1038/srep20154] [PMID]
[127] Li G, Chen C, Laing SD, Ballard C, Biju KC, Reddick RL, Clark RA, Li S. Hematopoietic knockdown of PPARδ reduces atherosclerosis in LDLR−/− mice. Gene Therapy. 2016 Jan;23(1):78-85. [10.1038/gt.2015.78] [PMID]
[128] Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nature Reviews Endocrinology. 2017 Jan;13(1):36-49. [10.1038/ nrendo.2016.135] [PMID]
[129] Dubois V, Eeckhoute J, Lefebvre P, Staels B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. The Journal of clinical investigation. 2017 Apr 3;127(4):1202-14. [10.1172/JCI88894] [PMID]
[130] Grabacka M, Pierzchalska M, Dean M, Reiss K. Regulation of ketone body metabolism and the role of PPARα. International journal of molecular sciences. 2016 Dec 13;17 (12):2093. [10.3390/ijms17122093] [PMID]
[131] Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal of hepatology. 2015 Mar 1;62(3):720-33. [10.1016/j. jhep.2014.10.039] [PMID]
[132] Guan D, Xiong Y, Borck PC, Jang C, Doulias PT, Papazyan R, Fang B, Jiang C, Zhang Y, Briggs ER, Hu W. Diet-induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes. Cell. 2018 Aug 9;174(4):831-42. [10.1016/j.cell.2018.06.031] [PMID]
[133] Barroso E, Rodríguez-Calvo R, Serrano-Marco L, Astudillo AM, Balsinde J, Palomer X, Vazquez-Carrera M. The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-Lipin 1-PPARα pathway leading to increased fatty acid oxidation. Endocrinology. 2011 May 1;152(5):1848-59. [10. 1210/en.2010-1468] [PMID]
[134] Zarei M, Barroso E, Palomer X, Dai J, Rada P, Quesada-López T, Escolà-Gil JC, Cedó L, Zali MR, Molaei M, Dabiri R. Hepatic regulation of VLDL receptor by PPARβ/δ and FGF21 modulates non-alcoholic fatty liver disease. Molecular metabolism. 2018 Feb 1;8:117-31. [10.1016/j.molmet.2017. 12.008] [PMID]
[135] Francque S, Verrijken A, Caron S, Prawitt J, Paumelle R, Derudas B, Lefebvre P, Taskinen MR, Van Hul W, Mertens I, Hubens G. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. Journal of hepatology. 2015 Jul 1;63(1):164-
Hosseini M, et al. The Role of PPARs in Regulating Immune Response in Immune-Related Diseases. JSMJ. 2024; 22(6):650-677
Journal of Medical Sciences
January & February 2024. Vol 22. No 6
73. [10.1016/j.jhep.2015.02.019] [PMID]
[136] Greenstein AW, Majumdar N, Yang P, Subbaiah PV, Kineman RD, Cordoba-Chacon J. Hepatocyte-specific, PPARγ-regulated mechanisms to promote steatosis in adult mice. J Endocrinol. 2017 Jan 1;232(1):107-21. [10.1530/JOE-16-0447] [PMID]
[137] Li X, Chen Y, Wu S, He J, Lou L, Ye W, Wang J. microRNA-34a and microRNA-34c promote the activation of human hepatic stellate cells by targeting peroxisome proliferator-activated receptor γ. Molecular Medicine Reports. 2015 Feb 1;11(2):1017-24. [10.3892/mmr.2014.2846] [PMID]
[138] Schipper HS, Prakken B, Kalkhoven E, Boes M. Adipose tissue-resident immune cells: key players in immunometabolism. Trends in Endocrinology & Metabolism. 2012 Aug 1;23(8):407-15. [10.1016/j.tem.2012.05.011] [PMID]
[139] Cypess AM. Reassessing human adipose tissue. New England Journal of Medicine. 2022 Feb 24;386(8):768-79. [10.1056/NEJMra2032804] [PMID]
[140] Konwerski M, Gąsecka A, Opolski G, Grabowski M, Mazurek T. Role of epicardial adipose tissue in cardiovascular diseases: a review. Biology. 2022 Feb 23;11(3):355.[ 10.3390/ biology11030355] [PMID]
[141] Dean JM, He A, Tan M, Wang J, Lu D, Razani B, Lodhi IJ. MED19 regulates adipogenesis and maintenance of white adipose tissue mass by mediating PPARγ-dependent gene expression. Cell reports. 2020 Oct 6;33(1). [10.1016/j. celrep.2020.108228] [PMID]
[142] El Ouarrat D, Isaac R, Lee YS, Wollam J, Lackey D, Riopel M, Bandyopadhyay G, Seo JB, Sampath-Kumar R, Olefsky JM. TAZ is a negative regulator of PPARγ activity in adipocytes and TAZ deletion improves insulin sensitivity and glucose tolerance. Cell metabolism. 2020 Jan 7;31(1):162-73. [10. 1016/j.cmet.2019.10.003 ] [PMID]
[143] Bastie C, Luquet S, Holst D, Jehl-Pietri C, Grimaldi PA. Alterations of peroxisome proliferator-activated receptor δ activity affect fatty acid-controlled adipose differentiation. Journal of Biological Chemistry. 2000 Dec 8;275(49):38768-73. [10.1074/jbc.M006450200] [PMID]
[144] Doktorova M, Zwarts I, Zutphen Tv, Dijk THv, Bloks VW, Harkema L, et al. Intestinal PPARδ protects against diet-induced obesity, insulin resistance and dyslipidemia. Scientific reports. 2017;7(1):846. [10.1038/s41598-017-00889-z] [PMID]
[145] HE B. MBX-8025, a novel peroxisome proliferator receptor-delta agonist: L ipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin. J Clin Endocrinol Metab. 2011;96:2889-97. [10.1210/jc.2011-1061] [PMID]
[146] Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR, Accili D. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell. 2012 Aug 3;150(3):620-32. [10.1016/j.cell.2012.06.027] [PMID]
[147] Hall JA, Ramachandran D, Roh HC, DiSpirito JR, Belchior T, Zushin PJ, Palmer C, Hong S, Mina AI, Liu B, Deng Z. Obesity-linked PPARγ S273 phosphorylation promotes insulin resistance through growth differentiation factor 3. Cell metabolism. 2020 Oct 6;32(4):665-75. [10.1016/j.cmet. 2020.08.016] [PMID]
[148] Kraakman MJ, Liu Q, Postigo-Fernandez J, Ji R, Kon N, Larrea D, Namwanje M, Fan L, Chan M, Area-Gomez E, Fu W. PPARγ deacetylation dissociates thiazolidinedione’s metabolic benefits from its adverse effects. The Journal of Clinical Investigation. 2018 Jun 1;128(6):2600-12. [10.1172/JCI98709] [PMID]
[149] Barberá MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F, Giralt M. Peroxisome proliferator-activated receptor α activates transcription of the brown fat uncoupling protein-1 gene: a link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. Journal of Biological Chemistry. 2001 Jan 12;276(2):1486-93. [10.1074/jbc. M006246200] [PMID]
[150] Rachid TL, Penna-de-Carvalho A, Bringhenti I, Aguila MB, Mandarim-de-Lacerda CA, Souza-Mello V. Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice. Molecular and Cellular Endocrinology. 2015 Feb 15;402:86-94. [10.1016/j.mce.2014.12.027] [PMID]
[151] Zhou L, Yu M, Arshad M, Wang W, Lu Y, Gong J, Gu Y, Li P, Xu L. Coordination among lipid droplets, peroxisomes, and mitochondria regulates energy expenditure through the CIDE-ATGL-PPARα pathway in adipocytes. Diabetes. 2018 Oct 1;67(10):1935-48. [10.2337/db17-1452] [PMID]
[152] Jeong S, Han M, Lee H, Kim M, Kim J, Nicol CJ, Kim BH, Choi JH, Nam KH, Oh GT, Yoon M. Effects of fenofibrate on high-fat diet-induced body weight gain and adiposity in female C57BL/6J mice. Metabolism. 2004 Oct 1;53(10):1284-9. [10.1016/j.metabol.2004.05.003] [PMID]
[153] Luquet S, Lopez‐Soriano J, Holst D, Fredenrich A, Melki J, Rassoulzadegan M, Grimaldi PA. Peroxisome proliferator‐activated receptor δ controls muscle development and oxydative capability. The FASEB Journal. 2003 Dec;17(15): 2299-301. [10.1096/fj.03-0269fje] [PMID]
[154] Koh JH, Hancock CR, Terada S, Higashida K, Holloszy JO, Han DH. PPARβ is essential for maintaining normal levels of PGC-1α and mitochondria and for the increase in muscle mitochondria induced by exercise. Cell metabolism. 2017 May 2;25(5):1176-85. [10.1016/j.cmet.2017.04.029] [PMID]
[155] Koh JH, Hancock CR, Han DH, Holloszy JO, Nair KS, Dasari S. AMPK and PPARβ positive feedback loop regulates endurance exercise training-mediated GLUT4 expression in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism. 2019 May 1;316(5):E931-9. [10.1152/ ajpendo.00460.2018] [PMID]
[156] Le Garf S, Murdaca J, Mothe-Satney I, Sibille B, Le Menn G, Chinetti G, Neels JG, Rousseau AS. Complementary immunometabolic effects of exercise and PPARβ/δ agonist in the context of diet-induced weight loss in obese female mice. International journal of molecular sciences. 2019 Oct 19; 20(20):5182. [10.3390/ijms20205182] [PMID]
[157] Fan W, Waizenegger W, Lin CS, Sorrentino V, He MX, Wall CE, Li H, Liddle C, Ruth TY, Atkins AR, Auwerx J. PPARδ promotes running endurance by preserving glucose. Cell metabolism. 2017 May 2;25(5):1186-93. [10.1016/j.cmet. 2017.04.006] [PMID]
[158] Finck BN, Bernal-Mizrachi C, Han DH, Coleman T, Sambandam N, LaRiviere LL, Holloszy JO, Semenkovich CF, Kelly DP. A potential link between muscle peroxisome
Journal of Medical Sciences
January & February 2024. Vol 22. No 6
Hosseini M, et al. The Role of PPARs in Regulating Immune Response in Immune-Related Diseases. JSMJ. 2024; 22(6):650-677
proliferator-activated receptor-α signaling and obesity-related diabetes. Cell metabolism. 2005 Feb 1;1(2):133-44. [10.1016/j. cmet.2005.01.006] [PMID]
[159] Bhattacharjee S, Das N, Mandala A, Mukhopadhyay S, Roy SS. Fenofibrate reverses palmitate induced impairment in glucose uptake in skeletal muscle cells by preventing cytosolic ceramide accumulation. Cellular Physiology and Biochemistry. 2015;37(4):1315-28. [10.1159/000430399] [PMID]
[160] Madrazo JA, Kelly DP. The PPAR trio: regulators of myocardial energy metabolism in health and disease. Journal of molecular and cellular cardiology. 2008 Jun 1;44(6):968-75. [10.1016/j.yjmcc.2008.03.021] [PMID]
[161] Pol CJ, Lieu M, Drosatos K. PPARs: protectors or opponents of myocardial function?. PPAR research. 2015 Oct;2015. [10.1155/2015/835985] [PMID]
[162] Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA, Okajima K, Homma S, Szabolcs MJ, Huang LS, Goldberg IJ. Cardiomyocyte expression of PPARγ leads to cardiac dysfunction in mice. The Journal of clinical investigation. 2007 Oct 1;117(10):2791-801. [10.1172/JCI30335] [PMID]
[163] Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor α associated with age-dependent cardiac toxicity. Journal of Biological Chemistry. 2000 Jul 21;275(29):22293-9. [10.1074/ jbc.M000248200 ] [PMID]
[164] Campbell FM, Kozak R, Wagner A, Altarejos JY, Dyck JR, Belke DD, Severson DL, Kelly DP, Lopaschuk GD. A role for peroxisome proliferator-activated receptor α (PPARα) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARα are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. Journal of Biological Chemistry. 2002 Feb 8;277(6):4098-103. [10.1074/jbc.M106054200] [PMID]
[165] Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders. Proceedings of the National Academy of Sciences. 1999 Jun 22;96(13):7473-8. [10.1073/ pnas.96.13.7473 ] [PMID]
[166] Luptak I, Balschi JA, Xing Y, Leone TC, Kelly DP, Tian R. Decreased contractile and metabolic reserve in peroxisome proliferator–activated receptor-α–null hearts can be rescued by increasing glucose transport and utilization. Circulation. 2005 Oct 11;112(15):2339-46. [10.1161/CIRCULATIONAHA. 105.534594 ] [PMID]
[167] Haemmerle G, Moustafa T, Woelkart G, Büttner S, Schmidt A, Van De Weijer T, Hesselink M, Jaeger D, Kienesberger PC, Zierler K, Schreiber R. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nature medicine. 2011 Sep;17(9):1076-85. [10. 1038/nm.2439 ] [PMID]
[168] Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP. The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. The Journal of clinical
investigation. 2002 Jan 1;109(1):121-30. [10.1172/JCI14080 ] [PMID]
[169] Liu J, Wang P, Luo J, Huang Y, He L, Yang H, Li Q, Wu S, Zhelyabovska O, Yang Q. Peroxisome proliferator-activated receptor β/δ activation in adult hearts facilitates mitochondrial function and cardiac performance under pressure-overload condition. Hypertension. 2011 Feb;57(2):223-30. [10.1161/ HYPERTENSIONAHA.110.164590] [PMID]
[170] Olejnickova V, Novakova M, Provaznik I. Isolated heart models: cardiovascular system studies and technological advances. Medical & biological engineering & computing. 2015 Jul;53:669-78. [10.1007/s11517-015-1270-2] [PMID]
[171] Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, Evans RM, Schneider MD, Brako FA, Xiao Y, Chen YE. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nature medicine. 2004 Nov 1;10(11):1245-50. [10.1038/nm1116] [PMID]
[172] Duan SZ, Ivashchenko CY, Russell MW, Milstone DS, Mortensen RM. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator–activated receptor-γ both induce cardiac hypertrophy in mice. Circulation research. 2005 Aug 19;97(4):372-9. [10.1161/01.RES.0000179226.34112.6d] [PMID]
[173] Ding G, Fu M, Qin Q, Lewis W, Kim HW, Fukai T, Bacanamwo M, Chen YE, Schneider MD, Mangelsdorf DJ, Evans RM. Cardiac peroxisome proliferator-activated receptor δ is essential in protecting cardiomyocytes from oxidative damage. Cardiovascular research. 2007 Nov 1;76(2):269-79. [10.1016/ j.cardiores.2007.06.027] [PMID]
[174] Son NH, Yu S, Tuinei J, Arai K, Hamai H, Homma S, Shulman GI, Abel ED, Goldberg IJ. PPARγ-induced cardiolipotoxicity in mice is ameliorated by PPARα deficiency despite increases in fatty acid oxidation. The Journal of clinical investigation. 2010 Oct 1;120(10):3443-54. [10.1172/JCI40905] [PMID]
[175] Bosma M, Dapito DH, Drosatos-Tampakaki Z, Huiping-Son N, Huang LS, Kersten S, Drosatos K, Goldberg IJ. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochimica Et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2014 Dec 1;1841(12):1648-55. [10.1016/j.bbalip.2014.09.012] [PMID]
[176] Gou Q, Gong X, Jin J, Shi J, Hou Y. Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget. 2017 Sep 9;8(36): 60704. [10.18632/oncotarget.19610] [PMID]
[177] Fanale D, Amodeo V, Caruso S. The interplay between metabolism, PPAR signaling pathway, and cancer. PPAR research. 2017 Oct;2017.. [10.1155/2017/1830626] [PMID]
[178] Botta M, Audano M, Sahebkar A, Sirtori CR, Mitro N, Ruscica M. PPAR agonists and metabolic syndrome: an established role?. International journal of molecular sciences. 2018 Apr 14;19(4):1197. [10.3390/ijms19041197] [PMID]
[179] Nanjan MJ, Mohammed M, Kumar BP, Chandrasekar MJ. Thiazolidinediones as antidiabetic agents: A critical review. Bioorganic chemistry. 2018 Apr 1;77:548-67. [10.1016/j. bioorg.2018.02.009] [PMID]
Hosseini M, et al. The Role of PPARs in Regulating Immune Response in Immune-Related Diseases. JSMJ. 2024; 22(6):650-677
Journal of Medical Sciences
January & February 2024. Vol 22. No 6
[180] Moon JH, Kim K, Choi SH. Lipoprotein lipase: is it a magic target for the treatment of hypertriglyceridemia. Endocrinology and Metabolism. 2022 Aug;37(4):575. [10.3803/EnM.2022.402] [PMID]
[181] Lee YK, Sohn JH, Han JS, Park YJ, Jeon YG, Ji Y, Dalen KT, Sztalryd C, Kimmel AR, Kim JB. Perilipin 3 deficiency stimulates thermogenic beige adipocytes through PPARα activation. Diabetes. 2018 May 1;67(5):791-804. [10.2337/db17-0983] [PMID]
[182] Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JY, Tan NS. Exploration and development of PPAR modulators in health and disease: an update of clinical evidence. International journal of molecular sciences. 2019 Oct 11;20(20):5055. [10.3390/ijms20205055] [PMID]
[183] Luo Y, Hu CT, Qiao F, Wang XD, Qin JG, Du ZY, Chen LQ. Gemfibrozil improves lipid metabolism in Nile tilapia Oreochromis niloticus fed a high-carbohydrate diet through peroxisome proliferator activated receptor-α activation. General and Comparative Endocrinology. 2020 Sep 15;296: 113537. [10.1016/j.ygcen.2020.113537] [PMID]
[184] Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular actions of PPAR α in lipid metabolism and inflammation. Endocrine reviews. 2018 Oct;39(5):760-802. [10.1210/er.2018-00064] [PMID]
[185] Teruel T, Smith SA, Peterson J, Clapham JC. Synergistic activation of UCP-3 expression in cultured fetal rat brown adipocytes by PPARα and PPARγ ligands. Biochemical and Biophysical Research Communications. 2000 Jul 5;273(2):560-4. [10.1006/bbrc.2000.2982] [PMID]
[186] De Ciuceis C, Amiri F, Iglarz M, Cohn JS, Touyz RM, Schiffrin EL. Synergistic vascular protective effects of combined low doses of PPARα and PPARγ activators in angiotensin II‐induced hypertension in rats. British journal of pharmacology. 2007 May;151(1):45-53. [10.1038/sj.bjp.0707215] [PMID]
[187] Smith UL, GOGG S, JOHANSSON A, OLAUSSON T, ROTTER V, SVALSTEDT B. Thiazolidinediones (PPARγ agonists) but not PPAR α agonists increase IRS‐2 gene expression in 3T3‐L1 and human adipocytes 1. The FASEB Journal. 2001 Jan;15(1):215-20. [10.1096/fj.00-0020com] [PMID]
[188] Wang L, Teng R, Di L, Rogers H, Wu H, Kopp JB, Noguchi CT. PPARα and Sirt1 mediate erythropoietin action in increasing metabolic activity and browning of white adipocytes to protect against obesity and metabolic disorders. Diabetes. 2013 Dec 1;62(12):4122-31. [10.2337/db13-0518] [PMID]
[189] Zhang YM, Li MX, Tang Z, Wang CH. Wogonin suppresses osteopontin expression in adipocytes by activating PPARα. Acta Pharmacologica Sinica. 2015 Aug;36(8):987-97. [10.1038/ aps.2015.37] [PMID]
[190] Balakumar P, Rose M, Ganti SS, Krishan P, Singh M. PPAR dual agonists: are they opening Pandora's Box?. Pharmacological Research. 2007 Aug 1;56(2):91-8. [10.1016/j.phrs.2007.03.002] [PMID]
[191] Wittrisch S, Klöting N, Mörl K, Chakaroun R, Blüher M, Beck-Sickinger AG. NPY1R-targeted peptide-mediated delivery of a dual PPARα/γ agonist to adipocytes enhances adipogenesis and prevents diabetes progression. Molecular Metabolism. 2020 Jan 1;31:163-80. [10.1016/j.molmet.2019.11.009] [PMID]
[192] Athyros VG, Polyzos SA, Kountouras J, Katsiki N,
Anagnostis P, Doumas M, Mantzoros CS. Non-alcoholic fatty liver disease treatment in patients with type 2 diabetes mellitus; new kids on the block. Current vascular pharmacology. 2020 Mar 1;18(2):172-81. [10.2174/157016111 7666190405164313] [PMID]
[193] Yew T, Toh SA, S Millar J. Selective peroxisome proliferator-activated receptor-γ modulation to reduce cardiovascular risk in patients with insulin resistance. Recent Patents on Cardiovascular Drug Discovery (Discontinued). 2012 Apr 1;7(1):33-41. [10.2174/ 157489012799362359] [PMID]
[194] Gilardi F, Giudici M, Mitro N, Maschi O, Guerrini U, Rando G, Maggi A, Cermenati G, Laghezza A, Loiodice F, Pochetti G. LT175 is a novel PPARα/γ ligand with potent insulin-sensitizing effects and reduced adipogenic properties. Journal of Biological Chemistry. 2014 Mar 7;289(10):6908-20. [10.1074/jbc.M113.506394] [PMID]
[195] Motani A, Wang Z, Weiszmann J, McGee LR, Lee G, Liu Q, Staunton J, Fang Z, Fuentes H, Lindstrom M, Liu J. INT131: a selective modulator of PPARγ. Journal of molecular biology. 2009 Mar 13;386(5):1301-11. [10.1016/j.jmb.2009.01.025] [PMID]
[196] Godoy JA, Zolezzi JM, Inestrosa NC. INT131 increases dendritic arborization and protects against Aβ toxicity by inducing mitochondrial changes in hippocampal neurons. Biochemical and Biophysical Research Communications. 2017 Aug 26;490(3):955-62. [10.1016/j.bbrc.2017.06.146] [PMID]
[197] Colapietro F, Gershwin ME, Lleo A. PPAR agonists for the treatment of primary biliary cholangitis: old and new tales. Journal of translational autoimmunity. 2023 Jan 1;6:100188. [10.1016/j.jtauto.2023.100188] [PMID]
[198] Murayama MA, Chi HH, Matsuoka M, Iwakura Y. The CTRP3-AdipoR2 axis regulates the development of experimental autoimmune encephalomyelitis by suppressing Th17 cell differentiation. Frontiers in Immunology. 2021 Dec 2;12:607346. [10.3389/fimmu.2021.607346] [PMID]
[199] Aprahamian T, Bonegio RG, Richez C, Yasuda K, Chiang LK, Sato K, Walsh K, Rifkin IR. The peroxisome proliferator-activated receptor γ agonist rosiglitazone ameliorates murine lupus by induction of adiponectin. The Journal of Immunology. 2009 Jan 1;182(1):340-6. [10.4049/jimmunol.182.1.340] [PMID]
[200] Wang H, Franco F, Tsui YC, Xie X, Trefny MP, Zappasodi R, Mohmood SR, Fernández-García J, Tsai CH, Schulze I, Picard F. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nature immunology. 2020 Mar;21(3):298-308. [10.1038/s41590-019-0589-5] [PMID]
[201] Hichami A, Yessoufou A, Ghiringhelli F, Salvadori F, Moutairou K, Zwetyenga N, Khan NA. Peroxisome proliferator-activated receptor alpha deficiency impairs regulatory T cell functions: Possible application in the inhibition of melanoma tumor growth in mice. Biochimie. 2016 Dec 1;131:1-0. [10. 1016/j.biochi.2016.09.001] [PMID]
[202] Saibil SD, St. Paul M, Laister RC, Garcia-Batres CR, Israni-Winger K, Elford AR, Grimshaw N, Robert-Tissot C, Roy DG, Jones RG, Nguyen LT. Activation of peroxisome proliferator-activated receptors α and δ synergizes with inflammatory signals to enhance adoptive cell therapy. Cancer Research. 2019 Feb 1;79(3):445-51. [10.1158/0008-5472.CAN-17-3053] [PMID]
Journal of Medical Sciences
January & February 2024. Vol 22. No 6
Hosseini M, et al. The Role of PPARs in Regulating Immune Response in Immune-Related Diseases. JSMJ. 2024; 22(6):650-677
[203] Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaihed A, Filisio F, Giles-Davis W, Xu X, Karakousis GC, Schuchter LM. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer cell. 2017 Sep 11;32(3):377-91. [10.1016/j.ccell.2017.08.004] [PMID]
[204] Chowdhury PS, Chamoto K, Kumar A, Honjo T. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti–PD-1 therapy. Cancer immunology research. 2018 Nov 1;6(11):1375-87. [10.1158/2326-6066.CIR-18-0095] [PMID]
[205] Goyal G, Wong K, Nirschl CJ, Souders N, Neuberg D, Anandasabapathy N, Dranoff G. PPARγ contributes to immunity induced by cancer cell vaccines that secrete GM-CSF. Cancer immunology research. 2018 Jun 1;6(6):723-32. [10.1158/2326-6066.CIR-17-0612] [PMID]
[206] Fu S, He K, Tian C, Sun H, Zhu C, Bai S, Liu J, Wu Q, Xie D, Yue T, Shen Z. Impaired lipid biosynthesis hinders anti-tumor efficacy of intratumoral iNKT cells. Nature communications. 2020 Jan 23;11(1):438. [10.1038/s41467-020-14332-x] [PMID]
[207] Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D, Wei K, Beyaz S, Tavakkoli A, Foley C, Donnelly R, O’Farrelly C. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nature immunology. 2018 Dec;19(12):1330-40. [10.1038/s41590-018-0251-7] [PMID]
[208] Zhao T, Du H, Blum JS, Yan C. Critical role of PPARγ in myeloid-derived suppressor cell-stimulated cancer cell proliferation and metastasis. Oncotarget. 2016 Jan 1;7(2):1529. [10.18632/oncotarget.6414] [PMID]
[209] Xiong Z, Chan SL, Zhou J, Vong JS, Kwong TT, Zeng X, Wu H, Cao J, Tu Y, Feng Y, Yang W. Targeting PPAR-gamma counteracts tumour adaptation to immune-checkpoint blockade in hepatocellular carcinoma. Gut. 2023 Sep 1;72(9): 1758-73. [10.1136/gutjnl-2022-328364] [PMID]
[210] Hicks KC, Tyurina YY, Kagan VE, Gabrilovich DI. Myeloid Cell–Derived Oxidized Lipids and Regulation of the Tumor Microenvironment. Cancer research. 2022 Jan 15;82(2):187-94. [10.1158/0008-5472.CAN-21-3054] [PMID]
[211] Park J, Lee SE, Hur J, Hong EB, Choi JI, Yang JM, Kim JY, Kim YC, Cho HJ, Peters JM, Ryoo SB. M-CSF from cancer cells induces fatty acid synthase and PPARβ/δ activation in tumor myeloid cells, leading to tumor progression. Cell reports. 2015 Mar 10;10(9):1614-25. [10.1016/j.celrep.2015.02.024] [PMID]
[212] Porta C, Marino A, Consonni FM, Bleve A, Mola S, Storto M, Riboldi E, Sica A. Metabolic influence on the differentiation of suppressive myeloid cells in cancer. Carcinogenesis. 2018 Sep 21;39(9):1095-104. [10.1093/carcin/bgy088] [PMID] ا
[213] Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, inflammation, and cancer. Annual Review of Pathology: Mechanisms of Disease. 2016 May 23;11:421-49. [10.1146/ annurev-pathol-012615-044359] [PMID]