Effect of Sex and Sex Hormones on SARS-COV-2: A Review Article

Document Type : Review


1 Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

2 Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

3 Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.


When men are exposed to the coronavirus infection (SARS-CoV-2), compared with women, they will suffer from more severe consequences of this disease, leading to a higher death rate. These differences are probably due to sex-specific behaviors, genetic and hormonal factors, and sex differences in biological pathways associated with SARS-CoV-2 infection. Several socio-behavioral factors are involved in pathogenesis in men compared to women. However, sexual-biological differences and their effects on SARS-COV-2 outcomes have received less scholarly attention. Sexual-biological differences between healthy populations and age- and sex-specific conditions such as pregnancy and menopause also play a role. More extensive studies on gender-specific differences and robust analyses are needed to determine how gender can alter the cellular and molecular pathways associated with SARS-CoV-2. This will improve biomarker interpretation and clinical management of SARS-COV-2 patients by facilitating a personalized medicine approach to risk stratification, prevention, and treatment. The present review summarizes the available literature on the proposed molecular and cellular markers associated with SARS-COV-2 infection, their association with health outcomes, and any gender-specific variation reported.


Main Subjects

[1] Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. The lancet. 2020 Feb 15;395(10223):470-3. [10.1016/S0140-6736(20)30185-9 ] [PMID]
[2] Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific journal of allergy and immunology. 2020 Mar 1;38(1):1-9. [10.12932/AP-200220-0772 ] [PMID]
[3] Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 patho-
physiology: A review. Clinical immunology. 2020 Jun 1;215: 108427. [10.1016/j.clim.2020.108427 ] [PMID]
[4] Ansariniya H, Seifati SM, Zaker E, Zare F. Comparison of immune response between SARS, MERS, and COVID-19 infection, perspective on vaccine design and development. BioMed Research International. 2021 Jan 22;2021. [10.1155/ 2021/8870425 ] [PMID]
[5] Bhopal R. Covid-19 worldwide: we need precise data by age group and sex urgently. Bmj. 2020 Apr 3;369. [10.1136/ bmj.m1366 ] [PMID]
[6] Ahmed SB, Dumanski SM. Sex, gender and COVID-19: a call to action. Canadian Journal of Public Health. 2020 Dec;111:980-3. [10.17269/s41997-020-00417-z ] [PMID]
[7] Dudley JP, Lee NT. Disparities in age-specific morbidity and mortality from SARS-CoV-2 in China and the Republic of Korea. Clinical Infectious Diseases. 2020 Jul 28;71(15):863-5. [10.1093/cid/ciaa354 ] [PMID]
[8] Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DS, Du B. Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine. 2020 Apr 30;382(18):1708-20. [10.1056/NEJMoa2002032 ] [PMID]
[9] Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, Liu S, Yang JK. Gender differences in patients with COVID-19: focus on severity and mortality. Frontiers in public health. 2020:152. [10.3389/fpubh.2020.00152 ] [PMID]
[10] Reitsma MB, Fullman N, Ng M, Salama JS, Abajobir A, Abate KH, Abbafati C, Abera SF, Abraham B, Abyu GY, Adebiyi AO. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. The Lancet. 2017 May 13;389(10082):1885-906. [10.1016/S0140-6736(17) 30819-X ] [PMID]
[11] Griswold MG, Fullman N, Hawley C, Arian N, Zimsen SR, Tymeson HD, Venkateswaran V, Tapp AD, Forouzanfar MH, Salama JS, Abate KH. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2018 Sep 22;392(10152):1015-35. [10.1016/S2215-0366(18)30337-7 ] [PMID]
[12] Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluccello A, Foti G, Fumagalli R, Iotti G. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. Jama. 2020 Apr 28;323(16):1574-81. [10.1001/ jama.2020.5394 ] [PMID]
[13] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L. Clinical course and risk factors for mortality of
adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet. 2020 Mar 28;395(10229):1054-62. [10.1016/S0140-6736(20)30566-3 ] [PMID]
[14] Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular disease, drug therapy, and mortality in Covid-19. New England Journal of Medicine. 2020 Jun 18;382(25):e102. [10.1056/NEJMoa2007621 ] [PMID]
[15] Bots SH, Peters SA, Woodward M. Sex differences in coronary heart disease and stroke mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ global health. 2017 Mar 1;2(2):e000298. [10.1136/bmjgh-2017-000298] [PMID]
[16] Ataei A, Derakhshan MM, Razmjooie M, Zare F, Amiresmaeili H, Salehi N, Namakkoobi N, Mirhosseini H, Karim B, Iravani S. Androgens’ role in severity and mortality rates of COVID-19. Hormone and Metabolic Research. 2022 Nov 21. [10.1055/a-1954-5605 ] [PMID]
[17] Iwata-Yoshikawa N, Kakizaki M, Shiwa-Sudo N, Okura T, Tahara M, Fukushi S, Maeda K, Kawase M, Asanuma H, Tomita Y, Takayama I. Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways. Nature Communications. 2022 Oct 15;13(1):6100. [10.1038/s41467-022-33911-8 ] [PMID]
[18] Deng Q, ur Rasool R, Russell RM, Natesan R, Asangani IA. Targeting androgen regulation of TMPRSS2 and ACE2 as a therapeutic strategy to combat COVID-19. IScience. 2021 Mar 19;24(3). [10.1016/j.isci.2021.102254 ] [PMID]
[19] Clarke SA, Abbara A, Dhillo WS. Impact of COVID-19 on the Endocrine System: A Mini-review. Endocrinology. 2022 Jan 1;163(1):bqab203. [10.1210/endocr/bqab203 ] [PMID]
[20] Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells. 2020 Apr 9;9(4):920. [10.3390/cells9040920 ] [PMID]
[21] Lisco G, De Tullio A, Stragapede A, Solimando AG, Albanese F, Capobianco M, Giagulli VA, Guastamacchia E, De Pergola G, Vacca A, Racanelli V. COVID-19 and the endocrine system: a comprehensive review on the theme. Journal of clinical medicine. 2021 Jun 29;10(13):2920. [10.3390/jcm10132920 ] [PMID]
[22] Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nature Reviews Immunology. 2020 Jul;20(7):442-7. [10.1038/s41577-020-0348-8] [PMID]
[23] Marina S, Piemonti L. Gender and age effects on the rates of infection and deaths in individuals with confirmed SARS-CoV-2 infection in six European countries. Available at SSRN 3576790. 2020. [Link]
[24] Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nature Reviews Immunology. 2008 Sep;8(9):737-44. [10.1038/nri2394 ] [PMID]
[25] Roved J, Westerdahl H, Hasselquist D. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences. Hormones and behavior. 2017 Feb 1;88:95-105. [10.1016/j.yhbeh.2016.11.017 ] [PMID]
[26] Jawetz E, Brooks GF, Carroll KC, Butel JS, Morse SA, Mietzner TA. Jawetz, Melnick, & Adelberg's medical microbiology. (No
Journal of Medical Sciences
July & August 2023. Vol 22. No 3
Zaker E, et al. Sex, Sex Hormones and SARS-COV-2. JSMJ. 2023; 22(3): 377-389
Title). 1991. [Link]
[27] Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD. A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature. 2020 Mar;579(7798):270-3. [10.1038/s41586-020-2012-7 ] [PMID]
[28] Luan J, Lu Y, Jin X, Zhang L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and biophysical research communications. 2020 May 21;526(1):165-9. [10.1016/j.bbrc.2020.03.047 ] [PMID]
[29] Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A. The genome sequence of the SARS-associated coronavirus. Science. 2003 May 30;300(5624):1399-404. [10.1126/science. 1085953 ] [PMID]
[30] Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine. 2012 Nov 8;367(19):1814-20. [10.1056/NEJMoa1211721 ] [PMID]
[31] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020 Feb 15;395(10223):497-506. [10.1016/S0140-6736(20)30183-5 ] [PMID]
[32] Peiris JSM. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. The Lancet. 2003:1767-72. [10.1016/s0140-6736(03)13412-5 ] [PMID]
[33] Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, Ahuja A, Yung MY, Leung CB, To KF, Lui SF. A major outbreak of severe acute respiratory syndrome in Hong Kong. New England Journal of Medicine. 2003 May 15;348(20):1986-94. [10.1056/ NEJMoa030685 ] [PMID]
[34] Santema BT, Ouwerkerk W, Tromp J, Sama IE, Ravera A, Regitz-Zagrosek V, Hillege H, Samani NJ, Zannad F, Dickstein K, Lang CC. Identifying optimal doses of heart failure medications in men compared with women: a prospective, observational, cohort study. The Lancet. 2019 Oct 5;394(10205):1254-63. [10.1016/S0140-6736(19)31792-1 ] [PMID]
[35] Tukiainen T, Villani AC, Yen A, Rivas MA, Marshall JL, Satija R, Aguirre M, Gauthier L, Fleharty M, Kirby A, Cummings BB. Landscape of X chromosome inactivation across human tissues. Nature. 2017 Oct 12;550(7675):244-8. [10.1038/ nature24265 ] [PMID]
[36] Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, Raizada MK, Grant MB, Oudit GY. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circulation research. 2020 May 8;126(10):1456-74. [10.1161/CIRC RESAHA.120.317015 ] [PMID]
[37] Bukowska A, Spiller L, Wolke C, Lendeckel U, Weinert S, Hoffmann J, Bornfleth P, Kutschka I, Gardemann A, Isermann B, Goette A. Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Experimental Biology and Medicine. 2017 Aug;242(14): 1412-23. [10.1177/1535370217718808 ] [PMID]
[38] Baughn LB, Sharma N, Elhaik E, Sekulic A, Bryce AH, Fonseca R. Targeting TMPRSS2 in SARS-CoV-2 infection. InMayo Clinic
Proceedings 2020 Sep 1 (Vol. 95, No. 9, pp. 1989-1999). Elsevier. [10.1016/j.mayocp.2020.06.018 ] [PMID]
[39] Wei X, Xiao YT, Wang J, Chen R, Zhang W, Yang Y, Lv D, Qin C, Gu D, Zhang B, Chen W. Sex differences in severity and mortality among patients with COVID-19: evidence from pooled literature analysis and insights from integrated bioinformatic analysis. arXiv preprint arXiv:2003.13547. 2020 Mar 30. [Link]
[40] Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infectious diseases of poverty. 2020 Apr 1;9(02):23-9. [10. 1186/s40249-020-00662-x ] [PMID]
[41] Cai G. Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCov. MedRxiv. 2020 Feb 11:2020-02. [Link]
[42] Leung JM, Yang CX, Tam A, Shaipanich T, Hackett TL, Singhera GK, Dorscheid DR, Sin DD. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. European Respiratory Journal. 2020 May 1;55(5). [10.1183/13993003.00688-2020 ] [PMID]
[43] Chakladar J, Shende N, Li WT, Rajasekaran M, Chang EY, Ongkeko WM. Smoking-mediated upregulation of the androgen pathway leads to increased SARS-CoV-2 susceptibility. International journal of molecular sciences. 2020 May 21;21(10):3627. [10.3390/ijms21103627] [PMID]
[44] Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS, True LD, Morrissey C, Corey E, Montgomery B, Mostaghel E, Clegg N. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer discovery. 2014 Nov 1;4(11):1310-25. [10.1158/2159-8290.CD-13-1010 ] [PMID]
[45] Wambier CG, Vaño-Galván S, McCoy J, Gomez-Zubiaur A, Herrera S, Hermosa-Gelbard Á, Moreno-Arrones OM, Jiménez-Gómez N, González-Cantero A, Pascual PF, Segurado-Miravalles G. Androgenetic Alopecia Present in theMajority of Hospitalized COVID-19 Patients–the “Gabrin sign”. Journal of the American Academy of Dermatology. 2020. [10.1016/j. jaad.2020.05.079 ] [PMID]
[46] Montopoli M, Zumerle S, Vettor R, Rugge M, Zorzi M, Catapano CV, Carbone GM, Cavalli A, Pagano F, Ragazzi E, Prayer-Galetti T. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N= 4532). Annals of Oncology. 2020 Aug 1;31(8):1040-5. [10. 1016/j.annonc.2020.04.479 ] [PMID]
[47] Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (albany NY). 2020 Jun 6;12(11):10087. [10.18632/aging.103415 ] [PMID]
[48] Cheng Z, Zhou J, To KK, Chu H, Li C, Wang D, Yang D, Zheng S, Hao K, Bossé Y, Obeidat ME. Identification of TMPRSS2 as a susceptibility gene for severe 2009 pandemic A (H1N1) influenza and A (H7N9) influenza. The Journal of infectious diseases. 2015 Oct 15;212(8):1214-21. [10.1093/infdis/jiv246 ] [PMID]
[49] Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19–A systematic review. Life sciences. 2020 Aug 1;254:117788. [10.1016/j.lfs.2020. 117788 ] [PMID]
Zaker E, et al. Sex, Sex Hormones and SARS-COV-2. JSMJ. 2023; 22(3): 377-389
Journal of Medical Sciences
July & August 2023. Vol 22. No 3
[50] Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y, Tobin KA, Cerfolio RJ, Francois F, Horwitz LI. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. bmj. 2020 May 22;369. [10.1136/bmj.m1966] [PMID]
[51] Zeng F, Huang Y, Guo Y, Yin M, Chen X, Xiao L, Deng G. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. International Journal of Infectious Diseases. 2020 Jul 1;96:467-74. [10.1016/j.ijid.2020.05.055 ] [PMID]
[52] Chen G, Wu DI, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X. Clinical and immunological features of severe and moderate coronavirus disease 2019. The Journal of clinical investigation. 2020 May 1;130(5):2620-9. [10.1172/JCI137244 ] [PMID]
[53] Ejrnaes M, Filippi CM, Martinic MM, Ling EM, Togher LM, Crotty S, von Herrath MG. Resolution of a chronic viral infection after interleukin-10 receptor blockade. The Journal of experimental medicine. 2006 Oct 30;203(11):2461-72.
[10.1084/jem.20061462 ] [PMID]
[54] Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone M. Interleukin-10 determines viral clearance or persistence in vivo. Nature medicine. 2006;12(11):1301-9. [10.1038/nm1492 ] [PMID]
[55] di Mauro G, Scavone C, Rafaniello C, Rossi F, Capuano A. SARS-Cov-2 infection: Response of human immune system and possible implications for the rapid test and treatment. International immunopharmacology. 2020 Jul 1;84:106519. [10.1016/j.intimp.2020.106519] [PMID]
[56] Zeng F, Li L, Zeng J, Deng Y, Huang H, Chen B, Deng G. Can we predict the severity of coronavirus disease 2019 with a routine blood test. Pol Arch Intern Med. 2020 May 29;130(5):400-6.
[10.20452/pamw.15331 ] [PMID]
[57] Huang I, Pranata R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis. Journal of intensive care. 2020 Dec;8:1-0. [10.1186/ s40560-020-00453-4 ] [PMID]
[58] Zeng F, Dai C, Cai P, Wang J, Xu L, Li J, Hu G, Wang Z, Zheng F, Wang L. A comparison study of SARS‐CoV‐2 IgG antibody between male and female COVID‐19 patients: a possible reason underlying different outcome between sex. Journal of medical virology. 2020 Oct;92(10):2050-4. [10.1002/jmv. 25989 ] [PMID]
[59] Klein SL, Flanagan KL. Sex differences in immune responses. Nature Reviews Immunology. 2016 Oct;16(10):626-38. [10. 1038/nri.2016.90 ] [PMID]
[60] Wikby A, Månsson IA, Johansson B, Strindhall J, Nilsson SE. The immune risk profile is associated with age and gender: findings from three Swedish population studies of individuals 20–100 years of age. Biogerontology. 2008 Oct;9:299-308. [10.1007/ s10522-008-9138-6 ] [PMID]
[61] Das B, Bhanushali A, Khadapkar R, Jeswani K, Bhavsar M, Dasgupta A. Reference ranges for lymphocyte subsets in adults from western India: influence of sex, age and method of enumeration. Indian journal of medical sciences. 2008 Oct 1;62(10):397. [PMID]
[62] Villacres MC, Longmate J, Auge C, Diamond DJ. Predominant
type 1 CMV-specific memory T-helper response in humans: evidence for gender differences in cytokine secretion. Human immunology. 2004 May 1;65(5):476-85. [10.1016/j.humimm. 2004.02.021 ] [PMID]
[63] Taneja V. Sex hormones determine immune response. Frontiers in immunology. 2018 Aug 27;9:1931. [10.3389/ fimmu.2018.01931] [PMID]
[64] Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, Zhang M, Tan J, Xu Y, Song R, Song M. Neutrophil-to-lymphocyte ratio predicts severe illness patients with 2019 novel coronavirus in the early stage. MedRxiv. 2020 Jan 1. [10.1186/s12967-020-02374-0 ] [PMID]
[65] Yan X, Li F, Wang X, Yan J, Zhu F, Tang S, Deng Y, Wang H, Chen R, Yu Z, Li Y. Neutrophil to lymphocyte ratio as prognostic and predictive factor in patients with coronavirus disease 2019: a retrospective cross‐sectional study. Journal of medical virology. 2020 Nov;92(11):2573-81. [10.1002/jmv.26061 ] [PMID]
[66] Müller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M. Functional role of type I and type II interferons in antiviral defense. Science. 1994 Jun 24;264(5167):1918-21. [10.1126/science.8009221 ] [PMID]
[67] Scotland RS, Stables MJ, Madalli S, Watson P, Gilroy DW. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood, The Journal of the American Society of Hematology. 2011 Nov 24;118(22):5918-27. [10.1182/blood-2011-03-340281 ] [PMID]
[68] Webb K, Peckham H, Radziszewska A, Menon M, Oliveri P, Simpson F, Deakin CT, Lee S, Ciurtin C, Butler G, Wedderburn LR. Sex and pubertal differences in the type 1 interferon pathway associate with both X chromosome number and serum sex hormone concentration. Frontiers in immunology. 2019 Jan 15;9:3167. [10.1182/blood-2011-03-340281] [PMID]
[69] Berghöfer B, Frommer T, Haley G, Fink L, Bein G, Hackstein H. TLR7 ligands induce higher IFN-α production in females. The Journal of Immunology. 2006 Aug 15;177(4):2088-96. [10.4049/jimmunol.177.4.2088 ] [PMID]
[70] Libert C, Dejager L, Pinheiro I. The X chromosome in immune functions: when a chromosome makes the difference. Nature Reviews Immunology. 2010 Aug;10(8):594-604. [Link]
[71] Wang J, Syrett CM, Kramer MC, Basu A, Atchison ML, Anguera MC. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proceedings of the National Academy of Sciences. 2016 Apr 5;113(14):E2029-38. [10.1073/pnas.1520 113113 ] [PMID]
[72] Gaskins AJ, Wilchesky M, Mumford SL, Whitcomb BW, Browne RW, Wactawski-Wende J, Perkins NJ, Schisterman EF. Endogenous reproductive hormones and C-reactive protein across the menstrual cycle: the BioCycle Study. American journal of epidemiology. 2012 Mar 1;175(5):423-31. [10.1093/ aje/kwr343 ] [PMID]
[73] Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. The Journal of Immunology. 2017 May 15;198(10):4046-53. [10.4049/ jimmunol.1601896 ] [PMID]
[74] Medina KL, Strasser A, Kincade PW. Estrogen influences the
Journal of Medical Sciences
July & August 2023. Vol 22. No 3
Zaker E, et al. Sex, Sex Hormones and SARS-COV-2. JSMJ. 2023; 22(3): 377-389
differentiation, proliferation, and survival of early B-lineage precursors. Blood, The Journal of the American Society of Hematology. 2000 Mar 15;95(6):2059-67. [PMID]
[75] Molloy EJ, O'Neill AJ, Grantham JJ, Sheridan-Pereira M, Fitzpatrick JM, Webb DW, Watson RW. Sex-specific alterations in neutrophil apoptosis: the role of estradiol and progesterone. Blood. 2003 Oct 1;102(7):2653-9. [10.1182/blood-2003-02-0649 ] [PMID]
[76] Kyrou I, Weickert MO, Randeva HS. Diagnosis and management of polycystic ovary syndrome (PCOS). Endocrinology and diabetes: Case studies, questions and commentaries. 2015:99-113. [Link]
[77] Kyrou I, Randeva HS, Tsigos C, Kaltsas G, Weickert MO. Clinical problems caused by obesity. [Link]
[78] Randeva HS, Tan BK, Weickert MO, Lois K, Nestler JE, Sattar N, Lehnert H. Cardiometabolic aspects of the polycystic ovary syndrome. Endocrine reviews. 2012 Oct 1;33(5):812-41. [10.1210/er.2012-1003 ] [PMID]
[79] Klonoff DC, Umpierrez GE. COVID-19 in patients with diabetes: risk factors that increase morbidity. Metabolism. 2020 Jul;108:154224. [10.1016/j.metabol.2020.154224 ] [PMID]
[80] Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immuno-
suppression. The lancet. 2020 Mar 28;395(10229):1033-4. [10.1016/S0140-6736(20)30628-0 ] [PMID]
[81] Guo R, Zheng Y, Yang J, Zheng N. Association of TNF-alpha, IL-6 and IL-1beta gene polymorphisms with polycystic ovary syndrome: a meta-analysis. BMC genetics. 2015 Dec;16(1):1-3. [10.1186/s12863-015-0165-4 ] [PMID]
[82] Jing Y, Run-Qian L, Hao-Ran W, Hao-Ran C, Ya-Bin L, Yang G, Fei C. Potential influence of COVID-19/ACE2 on the female reproductive system. Molecular human reproduction. 2020 Jun;26(6):367-73. [10.1093/molehr/gaaa030 ] [PMID]
[83] Fagone P, Ciurleo R, Lombardo SD, Iacobello C, Palermo CI, Shoenfeld Y, Bendtzen K, Bramanti P, Nicoletti F. Transcriptional landscape of SARS-CoV-2 infection dismantles pathogenic pathways activated by the virus, proposes unique sex-specific differences and predicts tailored therapeutic strategies. Autoimmunity reviews. 2020 Jul 1;19(7):102571. [10.1016/j.autrev.2020.102571 ] [PMID]
[84] Maddaloni E, Buzzetti R. Covid‐19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes/ metabolism research and reviews. 2020 Oct;36(7):e33213321. [10.1002/dmrr.3321 ] [PMID]
[85] Weir EK, Thenappan T, Bhargava M, Chen Y. Does vitamin D deficiency increase the severity of COVID-19?. Clinical Medicine. 2020 Jul;20(4):e107. [10.7861/clinmed.2020-0301 ] [PMID]
[86] Hastie CE, Mackay DF, Ho F, Celis-Morales CA, Katikireddi SV, Niedzwiedz CL, Jani BD, Welsh P, Mair FS, Gray SR, O’Donnell CA. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020 Jul 1;14(4):561-5. [10.1016/j.dsx.2020.04.050 ] [PMID]
[87] Alhassan Mohammed H, Mirshafiey A, Vahedi H, Hemmasi G, Moussavi Nasl Khameneh A, Parastouei K, Saboor‐Yaraghi AA. Immunoregulation of inflammatory and inhibitory cytokines
by vitamin D 3 in patients with inflammatory bowel diseases. Scandinavian journal of immunology. 2017 Jun;85(6):386-94. [10.1111/sji.12547 ] [PMID]
[88] Peterson CA, Heffernan ME. Serum tumor necrosis factor-alpha concentrations are negatively correlated with serum 25 (OH) D concentrations in healthy women. Journal of inflammation. 2008 Dec;5(1):1-9. [10.1186/1476-9255-5-10 ] [PMID]
[89] Mohammad S, Mishra A, Ashraf MZ. Emerging role of vitamin D and its associated molecules in pathways related to pathogenesis of thrombosis. Biomolecules. 2019 Oct 24;9(11): 649. [10.3390/biom9110649 ] [PMID]