ترکیبات اسانس اسطوخودوس به عنوان آنتاگونیست های زیرواحد NR2B مربوط به گیرنده NMDA : یک روش آزمایشگاهی و مد لسازی مولکولی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهان دارویی، دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 گروه زیست شناسی، دانشکده علوم پایه، دانشگاه زنجان، زنجان، ایران

3 گروه علوم باغبانی، دانشکده کشاورزی، باشگاه پژوهشگران جوان و نخبگان، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

10.32598/JSMJ.21.2.2257

چکیده

زمینه و هدف گیاهان دارویی٬ منبع مهم مواد طبیعی با اثرهای درمانی مختلف هستند. هدف از مطالعه حاضر، تعیین ترکیبات شیمیایی
اسانس گیاه اسطوخودوس و ارزیابی اثر آنتاگونیست آ نها بر روی گیرند ههای انِ متیل دی آسپارتیک اسید در مغز با استفاده از دستگاه
کروماتوگرافی گاز یطی فسنجی جرمی و رویکردهای محاسباتی است.
روش بررسی اسانس سرشاخ ههای گ لدار )گل و برگ( استخراج و ترکیبات شیمیایی آن توسط کروماتوگرافی گازی-طی فسنجی
جرمی
تعیین شد. داکینگ مولکولی و ارزیابی ساختارهای مولکولی روی 20 ترکیب مهم گیاه صورت گرفت. از اتوداک وینا مربوط به نر مافزار
پایرکس برای انجام داکینگ مولکولی 20 لیگاند با NMDAR استفاده شد. ابزار وب SwissADME برای بررسی مقادیر توصی فکننده
مولکولی به کار گرفته شد.
یافت هها تعداد 41 ترکیب در اسانس گیاه اسطوخودوس شناسایی شد که ۵/ ۹۵ درصدکل اسانس را تشکیل م یدهند. بیشترین مقدار
ترکیبات ب هترتیب مربوط به ترانس کاروئول، ایزوپولگول، 8،3،1 - پارا-منتاترین و ایزوبورنئول بود. مطالعات داکینگ نشان داد 3 مورد از
بهترین لیگاندها برای اتصال به گیرنده انِ متیل دی آسپارتیک اسید شامل ترانس کاروئول، ایزوپولگول و 8،3،1 - پارا-منتا ترین است که
میل ترکیبی بیشتری نسبت به جایگاه فعال NMDAR نشان دادند. آیفنپرودیل ب هعنوان یک آنتاگونیست، مکا نهای اتصال مشترک را با
کامفور، تیمول، آلفا فلاندرن، لیمونن، گاما - 3- کارن، بتا-توجون، ترانس کاروئول و بتا-کاریوفیلن نشان دادند. کامفور، تیمول، بتا- توجون
و ترانس کاروئول بیشترین جذب گوارشی و ترانس کاروئول کمترین انرژی اتصال با NMDAR را داشتند.
نتیج هگیری کامفور، تیمول، بتا-توجون و تران سکاروئول م یتوانند ب هعنوان یک هدف اصلی بالقوه برای مهار NMDAR بهبود یادگیری و
حافظه در بیمار یهای عصبی انتخاب شوند.

کلیدواژه‌ها


[1] Calixto JB. Twenty-five years of research on medicinal plants
in Latin America: A personal view. J Ethnopharmacol. 2005;
100(1-2):131-4. [DOI:10.1016/j.jep.2005.06.004] [PMID]
[2] Prusinowska R, Śmigielski KB. Composition, biological properties
and therapeutic effects of lavender (lavandula angustifolia
l). A review. Herba Polonica. 2014; 60(2):56-66. [DOI:10.2478/
hepo-2014-0010]
[3] Ipek E, Zeytinoglu H, Okay S, Tuylu BA, Kurkcuoglu M, Baser
KHC. Genotoxicity and antigenotoxicity of origanum oil
and carvacrol evaluated by ames salmonella/microsomal
test. Food Chem. 2005; 93(3):551-6. [DOI:10.1016/j.foodchem.
2004.12.034]
[4] Koziol A, Stryjewska A, Librowski T, Salat K, Gawel M, Moniczewski
A, et al. An overview of the pharmacological properties
and potential applications of natural monoterpenes. Mini Rev
Med Chem. 2014; 14(14):1156-68. [DOI:10.2174/1389557514
666141127145820] [PMID]
[5] Mensah ML, Komlaga G, Forkuo AD, Firempong C, Anning AK,
Dickson RA. Toxicity and safety implications of herbal medicines
used in Africa. In: Builders PF, editor. Herbal Medicine.
2019. [DOI:10.5772/intechopen.72437]
[6] Cavanagh HM, Wilkinson JM. Biological activities of lavender
essential oil. Phytother Res. 2002; 16(4):301-8. [DOI:10.1002/
ptr.1103] [PMID]
[7] Mantovani AL, Vieira GP, Cunha WR, Groppo M, Santos RA,
Rodrigues V, et al. Chemical composition, antischistosomal
and cytotoxic effects of the essential oil of Lavandula angustifolia
grown in southeastern Brazil. Rev Bras Farmacogn. 2013;
23(6):877-84. [DOI:10.1590/S0102-695X2013000600004]
[8] de Rapper S, Kamatou G, Viljoen A, van Vuuren S. The in
vitro antimicrobial activity of lavandula angustifolia essential
oil in combination with other aroma-therapeutic oils.
Evid Based Complement Alternat Med. 2013; 2013:1-10.
[DOI:10.1155/2013/852049] [PMID] [PMCID]
[9] Monika S, Anna G, Edward K, Anna WO, Marta JB, Monika
L. The biological activities of cinnamon, geranium and lavender
essential oils. Molecules. 2014: 19(12):20929-40.
[DOI:10.3390/molecules191220929] [PMID] [PMCID]
[10] Karapandzova M, Cvetkovikj I, Stefkov G, Stoimenov V, Crvenov
M, Kulevanova S. The influence of duration of the distillation
of fresh and dried flowers on the essential oil composition
of lavandin cultivated in Republic of Macedonia. Macedonian
Pharm Bull. 2012; 58:31-8. [DOI:10.33320/maced.pharm.
bull.2012.58.004]
[11] Simon JE, Chadwick AF, Craker LE. Herbs: An indexed bibliography
1971-1980: The scientific literature on selected herbs
and aromatic and medicinal plants of the temperature zone.
North Haven: Archon Books; 1984.
[12] Verma RS, Rahman LU, Chanotiya CS, Verma RK, Chauhan A,
Yadav A, et al. Essential oil composition of lavandula angustifolia
mill. cultivated in the mid hills of Uttarakhand, India. J Serb
Chem Soc. 2010; 75(3):343-8. [DOI:10.2298/JSC090616015V]
[13] Verma RS, Rahman LU, Chanotiya CS, Verma RK, Chauhan A,
Yadav A, et al. Essential oil composition of lavandula angustifolia
mill. cultivated in the mid hills of Uttarakhand, India. J Serb
Chem Soc. 2010; 75(3):343-8.
[14] Moon T, Wilkinson J, Cavanagh H. Antibacterial activity
of essential oils, hydrosols and plant extracts from Australian
grown lavandula spp. Int J Aromather. 2006; 16(1):9-14.
[DOI:10.1016/j.ijat.2006.01.007]
[15] Guillén MD, Cabo N, Burillo AJ. Characterisation of the essential
oils of some cultivated aromatic plants of industrial
interest. J Sci Food Agric. 1996; 70(3):359-63. [DOI:10.1002/
(SICI)1097-0010(199603)70:33.0.CO;2-0]
[16] Ihsan SA. Essential oil composition of lavandula officinalis l.
grown in Jordan. J Kerbala Univ. 2007; 5(1):18-21. [Link]
[17] Wogiatzi E, Papachatzis A, Kalorizou H, Tzalahani A. Analysis
of lavandula hybrida essential oils growing in Greece. Analele
Universitătcedilla˜ ii din Craiova-Biologie, Horticultura, Tehnologia
Prelucrarii Produselor Agricole, Ingineria Mediului. 2011;
16:488-91. [Link]
[18] Seidler-àoĪykowska K, Mordalski R, Kucharski W, KĊdzia B, Bocianowski
J. Yielding and quality of lavender flowers (lavandula
angustifolia mill.) from organic cultivation. Acta Sci Pol Hortorum
Cultus. 2014; 13(6):173-83. [Link]
[19] Zagorcheva T, Stanev S, Rusanov K, Atanassov I. Comparative
GC/MS analysis of lavender (lavandula angustifolia mill.)
inflorescence and essential oil volatiles. Agric Sci Tech. 2013;
5(4):459-62. [Link]
[20] Chrysargyris A, Michailidi E, Tzortzakis N. Physiological and
biochemical responses of lavandula angustifolia to salinity
under mineral foliar application. Front Plant Sci. 2018; 9:489.
[DOI:10.3389/fpls.2018.00489] [PMID] [PMCID]
[21] Cordovilla MP, Bueno M, Aparicio C, Urrestarazu M. Effects
of salinity and the interaction between thymus vulgaris and
lavandula angustifolia on growth, ethylene production and essential
oil contents. J Plant Nutr. 2014; 37(6):875-88. [DOI:10.1
080/01904167.2013.873462]
[22] Torabbeigi M, Aberoomand Azar P. Analysis of essential
oil compositions of lavandula angustifolia by HS-SPME and
MAHS-SPME followed by GC and GC-MS. Acta Chromatogr.
2013; 25(3):571-9. [DOI:10.1556/AChrom.25.2013.3.12]
[23] Kotsiris G, Nektarios PA, Paraskevopoulou AT. Lavandula
angustifolia growth and physiology is affected by substrate
type and depth when grown under Mediterranean semiintensive
green roof conditions. HortSci. 2012; 47(2):311-7.
[DOI:10.21273/HORTSCI.47.2.311]
[24] Corneliu T, Ruxandra Ș, Béla D, Daniela LM, Anca CF, Sonia
AC. Biochemical and Histo-Anatomical Responses of Lavandula
angustifolia Mill. to Spruce and Beech Bark Extracts Application.
Plants (Basel). 2020: 9(7):859-75. [DOI:10.3390/
plants9070859] [PMID] [PMCID]
[25] Šoškić M, Bojović D, Tadić V. Comparative chemical analysis
of essential oils from lavender of different geographic origins.
Studia Universitatis Babes-Bolyai, Chemia. 2016; 61(2):126-36.
[Link]
Ramazani S, et al. Lavender essential oil compounds as antagonists of NMDA receptor subunit NR2B. JSMJ. 2022; 21(2):246-263
261
June, July 2022. Volume 21. Number 2
[26] Adams RP, Yanke T. Material review: Kashmir lavender oil: A
Comparison of new Kashmir lavender oils with commercial
lavender oils [Internet] 2008. [Updated 2022 November].
Available from: [Link]
[27] Hamad K, Al-Shaheen S, Kaskoos RA, Ahamad J, Jameel M,
Mir S. Essential oil composition and antioxidant activity of lavandula
angustifolia from Iraq. Int Res J Pharm. 2013; 4(4):117-
20. [Link]
[28] Lis‐Balchin M, Hart S. Studies on the mode of action of the
essential oil of lavender (lavandula angustifolia miller) Phytother
Research. 1999; 13(6):540-2. [DOI:10.1002/(SICI)1099-
1573(199909)13:6<540::AID-PTR523>3.0.CO;2-I]
[29] Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of
alzheimer’s disease. J Neurochem. 2008; 104(6):1433-9.
[DOI:10.1111/j.1471-4159.2007.05194.x] [PMID] [PMCID]
[30] Kumar A, Singh A. A review on alzheimer’s disease pathophysiology
and its management: An update. Pharmacol Rep.
2015; 67(2):195-203. [DOI:10.1016/j.pharep.2014.09.004]
[PMID]
[31] Lindwall G, Cole RD. Phosphorylation affects the ability of
tau protein to promote microtubule assembly. Journal of Biological
Chemistry. 1984; 259(8):5301-5. [DOI:10.1016/S0021-
9258(17)42989-9]
[32] Baumann K, Mandelkow E-M, Biernat J, Piwnica-Worms H,
Mandelkow E. Abnormal alzheimer‐like phosphorylation of
tau‐protein by cyclin‐dependent kinases cdk2 and cdk5. FEBS
lett. 1993; 336(3):417-24. [DOI:10.1016/0014-5793(93)80849-
P]
[33] Sawamura N, Gong JS, Garver WS, Heidenreich RA, Ninomiya
H, Ohno K, et al. Site-specific phosphorylation of tau accompanied
by activation of mitogen-activated protein kinase (MAPK)
in brains of Niemann-Pick type C mice. J Biol Chem. 2001;
276(13):10314-9. [DOI:10.1074/jbc.M009733200] [PMID]
[34] Liu J, Chang L, Song Y, Li H, Wu Y. The role of NMDA receptors
in alzheimer’s disease. Front Neurosci. 2019; 13:43-56.
[DOI:10.3389/fnins.2019.00043] [PMID] [PMCID]
[35] Danysz W, Parsons CG. The NMDA receptor antagonist memantine
as a symptomatological and neuroprotective treatment
for alzheimer’s disease: Preclinical evidence. Int J Geriatr
Psychiatry. 2003; 18(S1):S23-32. [DOI:10.1002/gps.938]
[PMID]
[36] Olivares D, K Deshpande V, Shi Y, K Lahiri D, H Greig N, T Rogers
J, et al. N-methyl D-aspartate (NMDA) receptor antagonists
and memantine treatment for alzheimer’s disease, vascular
dementia and parkinson’s disease. Curr Alzheimer Res. 2012;
9(6):746-58. [DOI:10.2174/156720512801322564] [PMID]
[PMCID]
[37] Silva GL, Luft C, Lunardelli A, Amaral RH, Melo DA, Donadio
MV, et al. Antioxidant, analgesic and anti-inflammatory effects
of lavender essential oil. An Acad Bras Cienc. 2015; 87(2):1397-
408. [DOI:10.1590/0001-3765201520150056] [PMID]
[38] Commission EP, Medicines EDftQo, Healthcare. European
pharmacopoeia: Council of Europe; 2021. [Link]
[39] Waqar M, Batool S. In silico analysis of binding interaction of
conantokins with NMDA receptors for potential therapeutic
use in alzheimer’s disease. J Venom Anim Toxins Incl Trop Dis.
2017; 23(1):42-54. [DOI:10.1186/s40409-017-0132-9] [PMID]
[PMCID]
[40] Daina A, Michielin O, Zoete V. SwissADME: A free web tool
to evaluate pharmacokinetics, drug-likeness and medicinal
chemistry friendliness of small molecules. Sci Rep. 2017;
7:42717-30. [DOI:10.1038/srep42717] [PMID] [PMCID]
[41] Daina A, Zoete V. A boiled‐egg to predict gastrointestinal absorption
and brain penetration of small molecules. ChemMed-
Chem. 2016; 11(11):1117-21. [DOI:10.1002/cmdc.201600182]
[PMID] [PMCID]
[42] Daina A, Michielin O, Zoete V. iLOGP: A simple, robust, and
efficient description of n-octanol/water partition coefficient
for drug design using the GB/SA approach. J Chem Inf Model.
2014; 54(12):3284-301. [DOI:10.1021/ci500467k] [PMID]
[43] Badreddine BS, Olfa E, Samir D, Hnia C, Lahbib BJM. Chemical
composition of rosmarinus and lavandula essential oils
and their insecticidal effects on orgyia trigotephras (lepidoptera,
lymantriidae). Asian Pac J Trop Dis. 2015; 8(2):98-103.
[DOI:10.1016/S1995-7645(14)60298-4]
[44] Najafian S, Rowshan V, Tarakemeh A. Comparing essential
oil composition and essential oil yield of rosmarinus officinalis
and lavandula angustifolia before and full flowering stages. Int
J Appl Biol Tech. 2012; 3(1):212-8. [Link]
[45] Jianu C, Pop G, T.Gruia A, Horhat FG. Chemical composition
and antimicrobial activity of essential oils of lavender (lavandula
angustifolia) and lavandin (lavandula x intermedia) grown
in western Romania. Int J Agric Biol. 2013; 15(4):772-6. [Link]
[46] Singh P, Andola H, Rawat M, Jangwan J. GC-MS Analysis of
essential oil from lavandula angustifolia cultivated in Garhwal
Himalaya. Nat Prod J. 2015; 5(4):268-72. [DOI:10.2174/22103
15505666150908232137]
[47] Guangyao D, Xiaohui B, Aoken A, Haji AA, Maitinuer M. Study
on Lavender Essential Oil Chemical Compositions by GC-MS
and Improved pGC. Open Access. 2020: 25(14):3166. [Link]
[48] Stanojević L, Stanković M, Cakić M, Nikolić V, Nikolić L, Ilić
D, et al. The effect of hydrodistillation techniques on yield,
kinetics, composition and antimicrobial activity of essential
oils from flowers of lavandula officinalis l. Hem Ind. 2011;
65(4):455-63. [DOI:10.2298/HEMIND110129047S]
[49] Hussain AI, Anwar F, Shahid M, Ashraf M, Przybylski R. Chemical
composition, and antioxidant and antimicrobial activities
of essential oil of spearmint (mentha spicata l.) from Pakistan.
J Essent Oil Res. 2010; 22(1):78-84. [DOI:10.1080/10412905.2
010.9700269]
[50] Crowell PL, Kennan WS, Haag JD, Ahmad S, Vedejs E, Gould
MN. Chemoprevention of mammary carcinogenesis by hydroxylated
derivatives of d-limonene. Carcinogenesis. 1992;
13(7):1261-4. [DOI:10.1093/carcin/13.7.1261] [PMID]
[51] Crowell PL. Prevention and therapy of cancer by dietary
monoterpenes. J Nutr. 1999; 129(3):775S-8. [DOI:10.1093/
jn/129.3.775S] [PMID]
Ramazani S, et al. Lavender essential oil compounds as antagonists of NMDA receptor subunit NR2B. JSMJ. 2022; 21(2):246-263
262
June, July 2022. Volume 21. Number 2
[52] Wattenberg LW, Sparnins VL, Barany G. Inhibition of N-nitrosodiethylamine
carcinogenesis in mice by naturally occurring
organosulfur compounds and monoterpenes. Cancer Res.
1989; 49(10):2689-92. [PMID]
[53] Ardashov OV, Pavlova AV, Il'ina IV, Morozova EA, Korchagina
DV, Karpova EV, et al. Highly potent activity of (1 R, 2 R,
6 S)-3-Methyl-6-(prop-1-en-2-yl) cyclohex-3-ene-1, 2-diol in
animal models of parkinson’s disease. J Med Chem. 2011;
54(11):3866-74. [DOI:10.1021/jm2001579] [PMID]
[54] Ringer KL, Davis EM, Croteau R. Monoterpene metabolism.
Cloning, expression, and characterization of (−)-isopiperitenol/(−)-
carveol dehydrogenase of peppermint and spearmint.
Plant Physiol. 2005; 137(3):863-72. [DOI:10.1104/
pp.104.053298] [PMID] [PMCID]
[55] Zhang Y, Li P, Feng J, Wu M. Dysfunction of NMDA receptors
in alzheimer’s disease. Neurol Sci. 2016; 37(7):1039-47.
[DOI:10.1007/s10072-016-2546-5] [PMID] [PMCID]
[56] Li ST, Ju JG. Functional roles of synaptic and extrasynaptic
NMDA receptors in physiological and pathological neuronal
activities. Curr Drug Targets. 2012; 13(2):207-21. [DOI:10.2174
/138945012799201630] [PMID]
[57] Wang R, Reddy PH. Role of glutamate and NMDA receptors
in alzheimer’s disease. J Alzheimers Dis. 2017; 57(4):1041-8.
[DOI:10.3233/JAD-160763] [PMID] [PMCID]
[58] Farlow MR. NMDA receptor antagonists: A new therapeutic
approach for alzheimer’s disease. Geriatrics. 2004; 59(6):22-7.
[PMID]
[59] Filiptsova O, Gazzavi-Rogozina L, Timoshyna I, Naboka O, Dyomina
YV, Ochkur A. The effect of the essential oils of lavender
and rosemary on the human short-term memory. Alexandria
J Med. 2018; 54(1):41-4. [DOI:10.1016/j.ajme.2017.05.004]
[60] Gerbeth K, Hüsch J, Fricker G, Werz O, Schubert-Zsilavecz M,
Abdel-Tawab M. In vitro metabolism, permeation, and brain
availability of six major boswellic acids from boswellia serrata
gum resins. Fitoterapia. 2013; 84:99-106. [DOI:10.1016/j.fitote.
2012.10.009] [PMID]
[61] Johnson AJ. Cognitive facilitation following intentional
odor exposure. Sensors. 2011; 11(5):5469-88. [DOI:10.3390/
s110505469] [PMID] [PMCID]
[62] Donello JE, Banerjee P, Li Y-X, Guo Y-X, Yoshitake T, Zhang X-L,
et al. Positive N-methyl-D-aspartate receptor modulation by
rapastinel promotes rapid and sustained antidepressant-like
effects. Int J Neuropsychopharmacol. 2018; 22(3):247-59.
[DOI:10.1093/ijnp/pyy101] [PMID] [PMCID]
[63] Ide S, Ikekubo Y, Mishina M, Hashimoto K, Ikeda K. Role of
NMDA receptor GluN2D subunit in the antidepressant effects
of enantiomers of ketamine. J Pharmacol Sci. 2017;
135(3):138-40. [DOI:10.1016/j.jphs.2017.11.001] [PMID]
[64] Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic
plasticity and depression: New insights from stress and rapid-
acting antidepressants. Nature Med. 2016; 22(3):238-49.
[DOI:10.1038/nm.4050] [PMID] [PMCID]
[65] Mony L, Kew JN, Gunthorpe MJ, Paoletti P. Allosteric modulators
of NR2B-containing NMDA receptors: Molecular
mechanisms and therapeutic potential. Br J Pharmacol. 2009;
157(8):1301-17. [DOI:10.1111/j.1476-5381.2009.00304.x]
[PMID] [PMCID]
[66] Stroebel D, Buhl DL, Knafels JD, Chanda PK, Green M, Sciabola
S, et al. A novel binding mode reveals two distinct classes of
NMDA receptor GluN2B-selective antagonists. Mol Pharmacol.
2016; 89(5):541-51. [DOI:10.1124/mol.115.103036]
[PMID] [PMCID]
[67] Preskorn S, Macaluso M, Mehra DO, Zammit G, Moskal JR,
Burch RM, et al. Randomized proof of concept trial of GLYX-
13, an N-methyl-D-aspartate receptor glycine site partial agonist,
in major depressive disorder nonresponsive to a previous
antidepressant agent. J Psychiatr Pract. 2015; 21(2):140-9.
[DOI:10.1097/01.pra.0000462606.17725.93] [PMID]